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Abstract. Symplectic relations and their generating functions have found extensive
applications in classical mechanics. In the present paper we undertake the study of
the correspondence between generating functions of symplectic relations and
kernels of integral operators of quantum theories. As a first step we study this
correspondence in the case of linear symplectic relations generated by quadratic
functions. The theory is sufficiently complicated even in this simple case. Addi-
tional complications must be expected in the general nonlinear theory due to the
fact that the composition of regular nonlinear symplectic relations is in general
singular and that nonlinear symplectic relations in general do not have global
generating functions. The present paper is a continuation of the study of linear
symplectic relations undertaken in [2}].

1. LINEAR SYMPLECTIC RELATIONS

A symplectic form on a vector space P is a bilinear skew symmetric non-dege-
nerate form on P.
A symplectic space is a pair (P, w), where P a vector space and w 1is a symplec-

tic form on P.
Let (P, w) be a symplectic space. If E is a subspace of P then the subspace
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{pEP|wle,p)=0 foreach ecFE}

is denoted by ES. A subspace E of P is said to be isotropic if E¥ D E, Lagrangian
if ES = E and coisotropic if ES C E.

For two symplectic spaces (Pl, wl) and (st ‘*’2) we denote by w; & w, the
symplectic form on P1 ®P2 defined by ((.ol @ wz)(pl,pz) = wl(pl) + wz(pz) for
p, EPI,p;Z EPZ. The symplectic space (P1 ® P2, w,® ‘*’2) is called the direct sum
of spaces (£, wl) and (sz wz').

a) The category of linear symplectic relations.

A linear symplectic relation is a triple p = ((PZ, wz), (Pl, “’1)’ R) where (Pl, "‘"1)
and (P2, wz) are symplectic spaces and R is a Lagrangian subspace of (P2, wz) &
@ (P, — w,). In this case we say that p is a linear symplectic relation from (£}, w,)
to (Pz’ wz) and we denote this by

o :(Pl’ wl) - (Pza (‘Jz)

R is called the graph of p (we also write R = Graph p).

Symplectic spaces with linear symplectic relations form a category. We denote
this category by LSR. The composition in LSR is the usual composition of rela-
tions. The identity morphism from (P, w) to (P, w) is given by the identity rela-
tion:

Lp, oy =((P,w), (P, w),R) with R={pep ' €PeP|p =p;.

One can show that if p = ((P2, wz), (Pp wl),R) is a linear symplectic relation
and F is a subspace of P, then

P(ES) =p(E)E,

where p(E) ={p,€P, | there exists e € E such that p,®e € R} is the image of E
under p. Hence for E isotropic (resp. Lagrangian, coisotropic), p (£) is also isotro-
pic (resp. Lagrangian, coisotropic).

b) The functor «t». For each linear symplectic relation p = ((P,, w,), (P, w,), R)
we introduce the adjoint relation pt = (7, ‘*’1)’ (Pz’ w2), R1), where

R'={p ®p,€F ®P)|p,®p ER}.
The map
(P, w) — P, w) =P, w), pr—p'

defines a contravariant functor in LSR. We have (p ")t = p for each relation p.

¢) Special morphisms. A linear symplectic relation p :(Pl,wl)—>(P2, w,) is
said to be
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(i) an epimorphism, if for any « :(P2, wz)—>(P, w), B:(Pz,wz)a(P,w)
aop=LFop implies x=§

(ii) a retraction, if there exists 0 : (P,, w,) = (P, w ) such that p e g = lp, o
(i"y amonomorphism, if fore, B : (P, w) > (P, w))
poa=pof implies o =

(ii") a coretraction, if there exists o :(Py, w,) ~> (P, w,) such that gop =
=0y

(—) an isomorphism, if it is at the same time a retraction and a coretraction.

In LSR conditions (i) and (ii) are equivalent. They are also equivalent to each
of the following conditions:

v

(i) popT=1p .,

(ivy pP)=P,
Similarly (i) and (ii ) are both equivalent to

iii T + —

(') plep=1p
or

(v pT(P) =P,
The functor «T» changes epimorphisms into monomorphisms and vice versa.

For any isomorphism p we have p~!=pt. Symplectic spaces with isomor-
phisms form a subcategory of LSR. The set of all monomorphisms and the
set of all epimorphisms provide two other examples of subcategories.

d) Reductions. For any coisotropic subspace K in a symplectic space (P, w)
the reduced symplectic space of (P, w) with respect to K is a symplectic space
(PIK], w[K]). The space P[K] is the quotient space K/K% and the form Wik is
defined by

leI(ITI’ 172) = w(pl‘ pz),

where ﬁl,ﬁzePlK] and p,, p, €P are such that p, €p, and p, €p,. The triple

"1 =P W s (P, @), R) where
R={pepePy ®P|PED},

is a linear symplectic relation called the reduction relation associated with K. This
relation is an epimorphism.

The following decomposition theorem holds:

If p: (Pv ""1) - (B, “’2) is a linear symplectic relation, then there exists a uni-
que isomorphsim posuch that

P =Tk°Po° ik e
where K| = p1(P)), K, = p(P).
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e) Selfadjoint idempotents. A linear symplectic relation x : (P, w)— (P, w) is
called selfadjoint if x¥ = x. The following proposition is a simple consequence
of the decomposition theorem.

PROPOSITION 1. If x :(P, w)— (P, w) is selfadjoint, then the isomorphism Xo
appearing in the decomposition

X =" ° X 1k K =x(P)

satisfies Xp° Xo = I(P[Kr w k)"

The next proposition characterizes selfadjoint idempotenfs.

PROPOSITION 2. Let & : (P, w) - (P, w) be a linear symplectic relation and let
K = 6 (P). The following conditions are equivalent:
(i) 8T=8and 606=25
.. — T °
(i) 6 = k) ° Tk
(iii) there exists p : (P, w) > (P, w,) such that § = ptop.

Proof. (i) = (ii). Let r = K- From Proposition 1 it follows that

5 =rT0800r, where 8,08, =1

Pixperxp”
Hence, 8§ =806 =r70500rorT°600r=rTo800600r=rT°r.
(i) = (i). Forr =r, and § =rtor, we have
8T =(@tor)t=rfor=%
and

§08=(toro(rtory=rto(rorf)or=rfor=2=.

(ii) = (iii) is obvious.
(iii) = (ii). Let K' = pT(Pl), r="rg, Then p = por, where u is a monomor-
phism, hence 8 =rfopufopor=rTorand K' =K. L]

DEFINITION 1. A linear symplectic relation & : (P, w) — (P, w) is called positive,
if here exists a linear symplectic relation p such that 6 = p Top.

It follows from Proposition 2 that a relation p is positive if and only if it is
selfadjoint and idempotent. It follows also that positive symplectic relations are
in one-to-one correspondence with coisotropic subspaces.
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2. QUADRATIC FUNCTIONS

We denote by V* the dual space of a vector space V. ForweV* andveV
the value w (v) of w on v is denoted also by (v, w). If X is a subspace of V then
X0 ={weVl* | {(x,w)=0 for x€X} is called the annihilator of X (in V*).
The identity mapping of V onto itself will be denoted by ¢,. The mapping
Ly ®(—tp) Ve V* >V & V* will be denoted by 7,.

a) The phase functor

A linear relation is a triple o« = (Y, X, A), where X and Y are vector spaces
and A is a subspace of Y @ X. Vector spaces with linear relations form a category,
denoted by LR. The composition in LR is the usual composition of relations. The
identity morphism from V to V is given by ¢,.

Let V be a vector space. The phase space of V is the symplectic space PhV =
= (Ve V* w,), where w, is the canonical symplectic form on V' & V'*:

wV(v ®w,v O wl) = w(vl) —wl(v) = (v, w) — (U, w)).

If X and Y are two vector spaces then the symplectic space PhX @ PhY can be
canonically identified with the phase space Ph(X @ Y). We shall use this identifica-
tion in the sequel.

To each linear relation a = (Y, X, A) there corresponds the linear symplectic
relation Phao = (PhY, PhX, R), where

R=(ty,yx®Ty)d &4

Here A ® AYC Ph(Y ® X) = PhY o PhX.
The map

V +—PhV, o«ot+— Pha

is a covariant functor from LR to LSR. It is called the phase functor.

b) Phase spaces and generating functions of Lagrangian subspaces

Let L be a Lagrangian subspace of a phase space PhV and let C = m (L),
where m, is the projection of V' @ V* onto V. The generating function of L
is the quadratic function Q on C defined by

1
Q) = — (v, w),
2

where v € C and w is an element of V* such thatvew € L.
Conversely, a quadratic function Q on a subspace C of V generates a Lagrangian
subspace L of PhV as follows:



84 W.M. TULCZYJEW, S. ZAKRZEWSKI

L={vewcVe V*¥*|lveC and (x,w)=(x,dQ(v)) foreach x €C}.
Here dQ denotes the mapping from C to C* defined by

(x,dQWH =QW+x)—Q(v)—Q(x).

The above formulae establish a bijective correspondence hetween Lagrangian
subspaces of PhV and quadratic functions on subspaces of V.
If C = V then both L and Q are said to be reguiar.

c) Linear phase relations and their generating functions

A linear phase relation is a linear symplectic relation from one phase space to
another. Phase spaces with linear phase relations form a category which we denote
by LPR. This is the full subcategory of LSR whose class of objects consists of
all phase spaces:

Ob (LPR) = Ph(Ob(LR)).

If p=(PhY,PhX,R) is a linear phase relation then R’ = (L(YQY*) 7, )NR)
is a Lagrangian subspace of PiY ® PhX = Phi(Y @ X). The generating function of
R’ will be called the generating function of p and will be denoted by Qp. This
function is defined on the subspace C,):”yex (R). The adjoint relation is
generated by the function Qp* : C,,T — IR, where

C.,={xeyeXeY|yexeC]
o
and
Q (xey)=—0Q, (yox).
p

Note that Cp, . = Graph () and Qppq = 0 for each linear relation a.

d) The category of quadratic functions

We now introduce a new category, called the category of quadratic functions
and denoted by QF. This category is isomorphic to LPR. It is obtained from
LPR by replacing linear phase relations by their generating functions. The formal
definition of QF is the following:

(i) objects of QF are vector spaces,

(i) morphisms from a vector space X to a vector space Y are quadratic func-
tions defined on subspaces of Y @ X. The set of all such functions will be denoted
by QF(Y, X),

(iii) the composition of two morphisms Q, €QF (Z,Y)and @, € OF(Y, X)
will be denoted by S1,(Q, + Q). It is defined by the following variational prin-
ciple. Let @, and Q2 be defined on €, C Y ® X and C2C Z oY, respectively.
ForzexeZoXletY, ={yeY|zeyeC(,,yox € C,}and let the function
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Q,,,(0)=0,z¢y)+ 0,y 2x).
Then Sty(Q2 + Ql) is defined on

C={zex€ZeX|Y,, #¢ and Q,  has astationary point}

by
Sty(@, + QP ex)=0,,,0),

where y is a stationary point (critical point) of Q,. .
The symbol Sz, refers to the fact that St (Q, + @) is defined as the collec-

tion of stationary values of the functions Q.

e) Morphisms with zero-dimensional domain
Each Lagrangian subspace L of a symplectic space (P, w) defines the linear
symplectic relation I {0} (P, w), given by the formula

Graph p, = L & {0}.

Conversely, if p :{0} > (P, w), then p =p, for L=p({0}). If (P, w)=PhV,
then p L is a linear phase relation and the generating function of L coincides
with the generating function of p, (if we identify ¥ and ¥ & {0}). In other words,
quadratic functions on subspaces of ¥ can be identified with the elements of
QF(V,{0).

Now let K be a Lagrangian subspace of PhA and p :PAA > PhV. If L = p(K)
then p, = p e p,. Combining this with the composition rules in QF we obtain
the following formula for the generating function of L:

(1) Q, =S5t,(0,+ Q).

f) Morse families
Let V and A be two vector spaces. Let M be a quadratic function on V' & A.
M is uniquely represented in the following form

1
(2) M@, N\) = Q) + ;(K,Ak>—<>\,3v),

where veV, A €A, Q0 is a quadratic functionon V, 4 : A > A*, A* = 4, and
B :V > A* Let p:PhA—~>PhV be the linear phase relation generated by the
gquadratic function M (ie. M = Qp).

Translations parallel to A and leaving M unchanged form a subspace of A,
denoted by Ay, In other words,

Ay={NEA| M. N+ X)) =M(v,\) foreachveV, A € A}.
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PROPOSITION 3. The following conditions are equivalent
D A= {0}
(ii) (kerdM)n ({0} e A) = {0}
(iii) Im A + Im B = A* (Im A denotes the image of A)
(v) p7({0h N (A e{o}) ={0}.

Proof. (i) = (ii) A,=kerdM |{0} oA

(ii) == (iii) dM|{0}M = A + (— B¥*) is injective if and only if [4 + (— B*)]* =
= A + (— B) is surjective

(il) <= (iv) follows from the equality

70N N (A ©{0}) = (ker dM |1y, ,) @ {0} .
If the conditions of Proposition 3 are satisfied, we say that M is a Morse family
of functions on A indexed over V. The Lagrangian subspace L = p(A @ {0}) of

PhV is said to be generated by the Morse family M. By formula (1), the generating
function of L is given by

Q==5t,(M+0).
The conditions listed in Proposition 3 mean that for each v € C = m,(L) there

is exactly one stationary point.

PROPOSITION 4. Let p : PhA - PhV be the linear phase relation generated by a
quadratic function M on V @ A. Let M be given by formula (2). Then the generat-
ing function Q of L = p(A ®{0}) is defined on C =B (Im A), and for v €C,

1
Q@) == — (\, B) + Q)

where N is any element of A such that AN = Bv.

Proof. véw @\ e x & Graph p if and only if
—x=AAX—Bv and w= dQO(u) — B*A.

Hence v @ w € p (A ©{0}) if and only if there exists A € A such that
AAX=Bv and w= dQO(v)—B*)\.

The condition for v is therefore
BvelmA, or veB '(ImA).

For v € C we have
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1 1 1 1
Q)= —(,w) = — (v,dQ,(V)) — — (v, B*\) = Q,(v) — — (X, Bv). =
2 2 2 2

Morse families provide an alternative representation of Lagrangian subspaces
by quadratic functions.

PROPOSITION 5. Each Lagrangian subspace L of PhV is generated by a Morse
family indexed over V.

Proof. Let Q be the generating function of L defined on a subspace Cof V.
We set A = C? and define

Mo ) =—@, N+ )
whereve V, A €A, and a is any extension of Q to the space V. From Proposi-

tion 4 we see that M is a Morse familly generating L. L]

Morse families can be used to generate linear phase relations. A linear phase
relation p :PhX — PiY is said to be generated by a Morse family
M :(Y®X)®A—>lRifSt‘\(M):Qp.

3. SCHWARTZ SPACES AND INTEGRATION OF DISTRIBUTIONS

a) Densities on a vector space
Let V be a vector space of dimension 1. For any real non negative ¢ we denote

by | V'*|° the complex one-dimensional space of mappings u :/'{ V - € such that

p(tw) =|t|°pw) forr € R, w E/'{ V (0% =1 is assumed). |V* |1 is denoted also
by | V*|. The product u, - pyof uy €| V*|°tand u, €| V*|°2, defined by

(g )W) =, (W) 1y (w)
belongsto| V*|” " % We can also divide u; €| V* |t by u, €| V*|*?if 0,< 0,

and u, # 0. The quotient Ll defined by

My
Ky sy w)
— W)=
u, Hy(w)

n
for non-zero w €A V, belongs to | V'* |71 792,
An element u of| V* |° is said to be positive if u(w) is positive for each w # 0.
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Positive elements of | V*|? can be raised to non-negative powers. The power
u”is defined by

HY(w) = )",

and belongs to | V'* |7,

Any isomorphism A4 : V - W of two vector spaces gives rise to an isomorphism
A | V* [" —>| W* ]" (denoted by the same letter).

If V=X®Y then |V*|°=|X*|°¢|Y*|°. Here the tensor product u ®»
of uE€|X*|°and v €| Y *|° is identified with an element of | V'*|° as follows:

(MOVIXAY) =u(X)v(P), )—ce;n\X, }7€n7\"n Y, m=dim X.
We also have a canonical isomorphism
V=Xt e | (VX%
This isomorphism is defined by
V= X* | Y¥|P = | X* %0 | (XY,
where Y is an arbitrary complement of X in V.
A o-density on V is a mapping from Vto | V*|.

1
1 - densities are called densities and 02 - densities are called half-densities. O -

densities are simply complex functions on V.
We shall often identify elements of | V'* | with constant o - densities. There is
a constant positive density associated with each linear coordinate system

(vl,...,v™) of V. This density denoted by dv!...dv" is characterized by
3 d
dvl. . . dv*|— A...A =1.
ovl ov”
With respect to a coordinate system (v!,...,v") a o-density { is represented

by a function fsuch that
¢=f-(dvl... dv™)°.

Using a different coordinate system (U!,...,0") we obtain for the same ¢ a
function f such that

dwl, ..., oM °

a(al,...,ﬁ")[ )

f=f|

Densities on a vector space V can be integrated. The integral of a density ¢ is
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calculated from the formula

j;:f f@l .. v del. . do”
|4 IRY
in any coordinate system (v!,...,v")in V.

The modulus of a form Q e/'{ V'* is the density | £2| defined by

|2](w) = | Q(w)| for weAV.

b) Schwartz spaces S and S' associated with a vector space

Let V be a vector space. By S(V) (the Schwartz space of V) we denote the
space of smooth, rapidly vanishing at infinity half-densities on V. More exactly,
a half-density ¥ on ¥ belongs to S(V) if

(i) ¥ :¥V —>|V*|Y2isa C~-mapping,

(ii) for any differential operator A with polynomial coefficients

|91, = sup [A¥ )| <ee.

Here | - | denotes a fixed norm on | V*|V/2.

The space S(V) is endowed with natural topology induced by seminorms
| -1, ¥ we choose a coordinate system (v, ..., v") on V, then the same topo-
logy can be described as induced by the following family of norms:

(3) [v]s= Usgl veD Y (W)},

where o = (oz], .. ,ozn), g = (Bl, e ,ﬁ") are multi-indices and v“Dﬁ denotes
the differential operator

o] (==
e [T
k=1 I=1 dv!

We denote by S’ (V) the dual space of S(V):

Sy =Sy

If X €S (V) and ¢ € S(V) then the value of 2 on y is denoted by (Y, #").
S'(V) is endowed with the weak topology, i.e. the one induced by mappings
A Y, ) for y € S(V).

An element ¢ of S(V) may be treated as a functional on S(V) as follows:
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4 S(V)9¢'—><¢,\P)=/¢'¢/-

14

This defines a continuous inclusion S(V) CS'(V).
Elements of S'(V) are called generalized half-densities on V. The scalar product
(¢|¥)of ¢, ¥ €S8(V) is defined by

(5) <¢|w>=<$,w>=/$-w,

Vv

where ¢ is the complex conjugate of ¢. Note that (9] ¥y =(9, ¥) is defined also
for y €S (V).
If X and Y are two vector spaces, then

SXaY)=SWX)®S5(Y)
and
S'(X » Y)= S'(X) 8 S'(Y),

where — and ™ denote suitable completions ofalgebraictensor products (see
[3D.

Each element ) of S'(X®Y) defines a continuous linear mapping
HE:SX) > S'(V) by

(G AF V) =W o¢,H)

for Y €S(X), ¢ €S(Y). It follows from the kernel theorem that all continuous
linear mappings from S(X) to S'(Y) are obtained in this way.
Together with J(;’,( we have f}' :S(Y)—S'(X), defined by

(6) W, AL =Y @, A

for y €S(X), ¢ € S(Y).
c) Integration conventions

If ¢, ¢ €S(V) then the density ¢ - ¢ is Lebesgue integrable. The integral in
formula (4) is the ordinary Lebesgue integral. We intend to use the integration
symbol to denote conditionally convergent improper integrals and also to denote
operations which are integrals only formally in a generalized sense defined below.
The generalization in based on the observation that for a Lebesgue integrable
density { on V'



THE CATEGORY OF FRESNEL KERNELS 91

f ¢ =¢(0),
14

where ¢ is the Fourier transform of ¢:

(7) f(w):fe*“”‘w){(v) for weVv*
v

We first introduce auxiliary spaces associated with a vector space V:

(8) SV, =u-S)={uy |y €S} (Schwartz densities)
and
Sy (¢
&) SV)y=—"—-= k— |y €SV (Schwartz functions),
u u

where p €| V'* [1/2, u # 0 (any p # 0 gives the same result).
Note that the multiplication and the division by u is also defined for A €
eS'(V):

S'WV)s A +—u- H €[SV, where (f,u-H)=(f u,X) for fESTV);
§
sw2x—Leism), where (5, LN = (= AH) for sesm,.
u u u

In analogy with (8) and (9) the images of these mappings are denoted by
S’(V)1 and S'( V), respectively. It is easy to see that

[S(V),) =S'(V), (generalized densities)
and
[S(n),) =S8'(V), (generalized functions).

The Fourier transform (7) defines an isomorphism of S(V)l and S( V)O. This
isomorphism can be extended to S'(V)1 in the usual way:

& =&

for ¢ ES(V*)I, res’ (V)1 The Fourier transform of a generahzed function
TesS' (V) is by definition such Fes' (V*), that F =T, where Tis T composed
with the reflection of V:

& D=, T) for §€S(V),; W) =8 (v).
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We give here several useful examples of Fourier transforms.

EXAMPLE 1. Special densities. For each u €| V*
unique element of| (V*)* | such that

=
ol |

Let 8 denote the Dirac density:

, %+ 0 we denote by u* the

1

peu¥ = —
n!

n=dim V.

(f, 8 =f(0) for feSW),
Then 80 = 1 and for each constant density u €| V* |, u # 0, we have
p=35,/u*.
EXAMPLE 2. If f € S(V), then
f=u*@w-1)",
where u is an arbitrary element of | V'*| such that u # 0. The equality is valid

also for freplaced by T.€ S'(V),,.

EXAMPLE 3. Let X be a subspace of V. If & GS'(X)l, we denote by Q"&X
the element ofS'(V)1 defined by
28, =(f|y, Z) for fESP),.

IfTe S'(V/X)O, we denote by T ® 1, an element ofS'(V)0 defined by

& Tely=( /&’,T> for ¢ €SV,

X
We shall show that for 2 € §'(X), we have
(Zoy) =Zel .
Indeed, for § € S(V'*), we have

G A(Z8)y=&, 28 =y T =

- <(j§) z) = <Lf,:’?’>=<§,§?’®1xo>.

XO
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DEFINITION 2. A generalized density & eS'(V)1 is said to be integrable if f?is
a continuous, slowly increasing (i.e. polynomially bounded) function. In this

case the integral f,, 2 is defined by

[ F= F(0).

14

Remark. L. Schwartz defined summable distributions in a different way (see
[4]). One can show that the two definitions are equivalent.

EXAMPLE 4. The product of y € S(V) and X € S'(V) is defined in the standard
way:

oK)= (fU,H) for fEST),
We shall show that - " is integrable and fV VA =y, ). For §’ES(V"‘)1

we have

G W-AIYY=E, Y- A= -{H )=

I

<¢-I §(W)Yw,f> =(E-(yef), Hel)=
V*

/ Fw) (X, ¥, X)),

V*
where X (v) = €(v, w) = e! W) It turns out that
10 (- A) V*—C; wr— X, ¥, A)

is a continuous function. By the continuity of Jf there exists a constant C such
that

(1) |X, v A <CY X, ¥vlE .
a.f

where | - ||g are the norms from formula (3) and the sum is finite. It is easy to see
that this sum is bounded by a polynomial.

EXAMPLE 5. Fresnel integrals. Let Q be a non-degenerate quadratic form on
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V{ie.dQ :V —> V*isabijection). If u €| V*| then we'@ is integrable and

u
f#eiQ - einsgnQ/4’
1% Ho

where sgn ( is the signature of Q and o is the unique positive element of | V'* |
such that

d@) p, =up

In order to prove this it suffices to show that

(ue@) ~(w) = _#_ einsgnQ/4*i((dQ)‘1w,w>/2_
Ho

The use of a canonical decomposition of V for Q:

Ox

n ) n .
V=0 ¥, el = ® yke'
k=1 k=1

reduces the problem to the one-dimensional case, where it becomes a standard
exercise in the theory of distributions.

Our next definition concerns the integration with respect to a part of the
variables. In this case the objects we are going to integrate on a vector space
V are elements of the space

S'(V),®S'(E)=uS'(V)®S'(E)=(ke])S'(V&E)

(here E is a vector space and u €| V* V2 #0).

DEFINITION 3. An element 2 of S'(V),® S'(E) is said to be integrable on V if
oy f, ¢ is integrable in the sense of Definition 2 for each ¢ € S§(E)

and
2¢ there exists a polynomial function P on V* and a continuous seminorm
|- || on S(E) such that

[(Z7 e |<P|¢|

for any ¢ € S(E). If Z is integrable then the integral fV Z is defined by

<¢,f 9”>=f:2”5¢:(f5¢)*(0).
[’4 | 4
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Remarks. (i) From 1° it follows that ¢ —— (Q‘f ¢) "(w) is a continuous func-
tional on S(F) for each w € V' * and also that w — (Q”f ¢) " (w) is a polynomial-
ly bounded function for each ¢ € S(F). Condition 2° states that the continuity
in ¢ and the polynomial boundedness in w are uniform.

(ii) The space S'(E) can be replaced by S'(E)l, S"(E)O and similar spaces.

EXAMPLE 6. Generalized half-densities as kernels of integral operators. Let
A eS'(VoE)y and y € S(V). We shall show that (Y ® 1) X is integrable on
V and

Jf{w:f(wm)x.

I/
First observe that for any ¢ € S(F)
(o) - AYo=y A

Consequently, this generalized density is integrable (see Example 4). Using
(10) we obtain

{{we ) - HE¢ (w) =X, ¥.XE¢) =X, ¥ 09, X).

By the continuity of ), there exist continuous seminorms | - |, and |- on S(V)
and S(F) respectively, such that

[ (X, ¥ 6. XD <X, Vo | 2]
Here | X, ¥ ||, is polynomially bounded as in (11).

PROPOSITION 6. (Fubini theorem). Let % €S'(V®E), be integrable on V. If
V=XeY, then & is integrable on X, [y ¥ is integrable on Y and

[

Y 'X vV

Proof. Forg € S(E),we have
ESTINEE £
since
G (ZE )= ZEr=(0g. 2=
—(ed) T =ted T)=TEH
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for¢ e S(V*)l. Similarly we have

(ZYEfy =Yg

forfeS(Y ®E)0. Forf=heogh €S5(Y)y.8 € S(E),, we obtain
(2YFhog) = FLE (e = (FE L h=1(2EO WD

Since (Z ,‘f g) " is continuous and polynomially bounded,

(12) (25 Etheg)] =/ (ZEg)h

Y*

is also a continuous and polynomially bounded function. Moreover, since there
exists a polynomial P such that

(13) |(Z78)"|<P-|g|. | |—aseminorm on S(E),,

we have

(14) Hffw(h@g)r(l’)Kf P ) |el [0 |<B@ |, [e]
. Y*

for p € X*, where P, is a polynomial and |- |, is a seminorm on S(Y),. Note
that we can always choose P as a tensor product of polynomials, since there
exist a positive real number C and a positive integer m such that

Pp,ry<c( +p2+r2)"’<c(1 +p2)M(1 +r2)m,

where p € X*, r € Y* and the squares p 2, r2 are taken with respect to arbitrary
scalar products in X * and Y'*.
For fOES(Y)0®S(E)0 (the algebraic tensor product) we obtain from (14)

(15) [(ZEEf)I<Pfl, -

where |||, is a continuous seminorm on S(Y & £),. If we take now a sequence
fokeS(Y)O®S(E)0 converging to fE€S(Y @ E),, then by (15) the functions
(3’}”‘”5}‘0")‘ converge uniformly on compact sets in X*. Therefore the limit
is a continuous function and (Q}' *E£)" must coincide with this function. Mo-

reover,
L5 <A1,

for fEeS(Y®E),, so Z is integrable on X. The integral f, Z is an element
ofS'(YGBE)lgiven by
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<f,f Z) =(ZL"Ef)(©0) for fESYoE)

X

Now we chek the integrability of [, Z on Y. To this end we compute

Uy Z)Eg) forg €S(E):
e 2> - <o =
X X

=[Z)ECee)) (0= f (ZE)(0,)¢0)
Y*

fr) = (foa [ 2) -

for §{ € S(Y*), (the last equality follows from (12)). The result is a continuous,
polynomially bounded function on Y*:

E
[(I fl’) g] (r)=(Z72)(0,r).

X oy
From (13) we get also the required inequality

E

1) el

X vy

<P, |g]

forr € Y*. Thus [, % is integrable on Y and we have forg € S(E),

<gfy£ fZ’>=[(L@)EgJA(0)=(f£g)‘(o, 0)= <g,f£)f> . .

y vV

Remarks. (i) If we put E = {0}, we obtain the Fubini theorem for integrable
densities on V.

(ii) The space S '(VGBE)I in the proposition can be easily replaced by
S '(V)lé S'(E) etc. The Proposition is formulated in terms of densities in order
to simplify the notation in the proof.
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4. FRESNEL DISTRIBUTIONS

a) Regular Fresnel distributions

DEFINITION 4. A regular Fresnel distribution on a vector space V is a half-density
on V of the following form

(16) H=pe'Q,

where @ is a quadratic function on ¥V and u e| V* |1/2 ,u#0.

To each regular Fresnel distribution X on V there correspond a quadratic
function Q@ on V and a regular Lagrangian subspace L of PiV such that (16)
holds for some u and L is generated by Q.

b) Fresnel distributions defined by Morese families

By Proposition 5 any (not necessarily regular) Lagrangian subspace L C PhV
is generated by a Morse family M indexed over V. M is a quadratic function on
V ® A, where A is a vector space. Therefore M corresponds to a regular Lagrangian
subspace of Ph(V @ A). Thus, one can define general Lagrangian subspaces start-
ing from regular ones. The following proposition enables us to proceed similarly
with Fresnel distributions.

PROPOSITION 7. Let M be a quadratic function on V& A and let p€|V* |1/2
®|A*| u+#0. Then ue™ js integrable on A if and only if M is a Morse family
of functions on A. O

Proof. If M is not a Morse family then 3; = (ueiM)X ¢ is invariant with respect
to a one-parameter group of translations
ADAr—= A+ EA Mg €A N #0,1 ER)

for ¢ € S(V) (see condition (i) of Proposition 3). Therefore the Fourier transform
of & , satisfies the equation

Ny Z,=0

and .9? o cannot be a continuous function, unless it is zero. But it is not zero
for a certain ¢ € S(V), since ye”” # 0. Thus pe™ is not integrable.

Now, let us assume that M is a Morse family on V. Let M be given by formula
(2) with A and B satisfying the condition (iii) of Proposition 3:

an ImA + Im B = A*.

Let p=p,®u,, where p, €| V*|V2, u €|A*| and let a(d) =1/2Q, AN).
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We have for ¢ € S(V)

I¢()\)=(#eiM)K¢(7\)=uAei“(*)f e i BTN
V/kerB

where

iQ
¢B :f l"ye 0¢
kerB

is an element of S(V/ker B),. Thus
Z,N)=n,e NG B*N) =, "D (gg0B5) (M),

where B, : V/ker B - Im B is the isomorphism induced by B. Using the result of
Example 3 we can write

_1 N _ -~
(85°B51)° (V) = 6,. (),
where ¢, = (¢p°By ') - & p,and also
eia(k} = (ﬂ”ﬁlmA)‘()\),
where 2 € §'(Im A), is given by
34(,‘) — #* einsgl(a)’4—i(A61x,x>/2
9
for x €Ilm A (see Example 5). Here A0 :Alker A - Im A is the isomorphism
1
induced by A4 and ao(‘) = 5 (-,A0 %
Now we calculate the Fourier transform of % > For § € S(A¥),,
(18) & 2=, bpabt €= pu,u ™) =
=((E+0,.) s By )= (x4, (my ™)) =
= (§xP e, (€' %) =(Cx DME, L8 5=
= ([(§*¢A*)/“:] ilmA s g) -

It

/:r(x,,) I¢B(Bg‘x8)§(x,,—x8)/u’;=

Im A ImB

y(xA)¢B(Bale)§(xA - xB)/“x
ImAxImB (erImA,x €Im B).
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We have used the standard theorem on the Fourier transform of a convolution
and the result of Example 2.
Now consider the exact sequence of linear mappings

0—ImANIMB—ImAxImB—>ImA +ImB—0,
where

an)=m,n) for n€lmANImB

B(xy,xg)=x,—xp for x,€ImA, xz€lmB.
Condition (17) implies |

(Im 4 x Im B)/(Im A NnIm B) = A*.

It follows that the last integral in (18) can be written in the form f,. §(x) f, (%),

where

(19) f,00) =

insgn{(@f4—iAg (2 +m),%, + /2 _
f Hoe 0 T g By g + D).

ImAnImB

Here x, €Im A, xg€Im B are such that x , — xp =2, pjisan element of | (V/ker B)* |
different from zero and u, €| (Im A N Im B)* | is defined by u;‘o ®Bou; = Hy® uE.

It is easy to see that ¢ is just the function f, > The integral on the right hand
side of (19) is a continuous function of %, and x 5. It follows that f!’d)(x) is a
continuous function of ». We have also

| Z, (0| <] ],
where || ¢ | = %Bgigli Jx ol ¢B(B61(%B +m)| (X =Im 4 N Im B) is a continuous

seminorm on S(V). ]

DEFINITION 5. An element ¢ of S'(V) is called a Fresnel distribution on V if

H =] ue'™ where u and M satisfy the assumptions of Proposition 7.
A

Examples of Fresnel distributions are provided by regular Fresnel distributions
(take A = {0}).
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c) Fresnel distributions characterized in terms of constraints

PROPOSITION 8. Each Fresnel distribution X on a vector space V is of the
following form

(20) <w,f>=fvo(w|c)e"9,

C

where Y € S(V)
C is a subspace of V
Q is a quadratic function on C
v €Hom (| V*|Y2,|C*|),v#0
and Y |odenotes the restriction of Y to C.
The objects v, C and Q are uniquely determined by X . If X = N ue™ then

Cand Q are determined by M as in Proposition 4.

Proof. From formula (19) we have for ¢ € S(V)
<¢, fue”” > = Z,0) =
A

insgn(a)/4 -5 _
ﬂoe 7% ¢B(BO 1”)/“1:

ImA NImB

insgn(a)/4 - -%(AO'IBO By

I

(B, 'uye

Bgl(Im 4)

~ insgn(@/d— L4 1By By iQ
f By 'uge 77 ppe °llu =

Bal(lm A) kerB

bpluy =

insgn(@)/4— A7 1By, Bvy2 +iQ, ()
fuce 0 o) uy,

C

where C =B~ }(Im A4) and Bo=H1,® Baluo e|C* |. Here u, €| (ker B)* | is such
that By® py = plz,. It follows that ¢ has the form (20) with C and Q determined
by M as in Proposition 4. Uniqueness of v, C and Q is obvious. ]
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5. FRESNEL KERNELS

DEFINITION 6. Let X and Y be two vector spaces. A Fresnel kernel from X to Y
is a Fresnel distributionon Y & X.

The set of Fresnel kernels from X to Y will be denoted by FK(Y, X).
To each Fresnel kermel % there corresponds a morphism Q (or p) in the
category QF (or LPR). We shall write

Q =cl(#)(orp =cl(F))

in order to denote the morphism Q (or p) corresponding to % .

By example 6 a Fresnel kernel % € FK(Y, X) is the integral kernel of the
operator F ;‘,’ :S(X) — S'(Y). The adjoint (in the sense of the scalar product (5))
operator (% 4}‘,{ )':8(Y) > S'(X) corresponds to the adjoint of # , which is by
definition a Fresnel kernel # T from Y to X such that

Voo, FH=(ey, Fr=(ey, P
for ¢y € S(X), ¢ € S(Y). We have then
(FH=(FhH
and
c(FT)=cl(F).
We shall use occasionally the following abbreviated notation
e3)) F. =F% and F =g)
for a Fresnel kernel # € FK(Y, X).

a) Composition

PROPOSITION 9. Let p, : PhX > PhV and p, : PhV — PhY be two linear phase rela-
tions. Let M, : Ve X @ A,>Rand M, YeVeéA > IR be Morse families gene-
rating p,and p,, respectively. Then the function M :Y® XA & A, @V > R,
given by

M(y9x’ >\1’ xz’ U) =M2(J’, U, )‘ ) +M1(U,x, k1)’
is a Morse family indexed over Y ® X if and only if
22) 0, ({0} N pJ({0}) = {0V,

In this case M generates p,° p,.
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Proof. We have
p({0) ={vew eV o V*|there exists \; €A,
such that dM (v, 0, \,) = (w, 0, 0}
and

pi({0h) ={vew eV ® V* | there exists \, €A,

such that dM,(0,v,\,) = (0, —w, 0)}.
Hence, condition (22) is equivalent to the following condition:
(23) dM,(v, 0, \)) = (w, 0,0) and dM,(0,v,],) =(0,—w, 0) implies
v=0, w=0 for )\IEAI, )\ZGAZ, VEV, werH*

We have also

((F,%, 3,8, 0), dM(y, x, A, A, 0) =
= (7,0, %), dM,(»,v, \,)) + (@, %, X)), dM, v, x, \))).

We first prove the sufficiency of condition (22). Suppose that dM(0, 0, )\1,
)\2, v) = 0. Then ‘

((F,,,), dM(0,v, )y + (@, %, X)), dM,,0,X ) =0

for each 7, %, X, X,, 0. If we set 7 =0,5=0and X, =0, we obtain dM,(v, 0, X)) =
=(w,, 0,0) for some w, € V*. If we set =0, X =0 and A\, =0, we obtain
sz(O, v, )\2) =(0,w,, 0) for some w, € V*. We see that w,+w,= 0. From
(23) we obtain v=0, w, = 0 and w,= 0, hence dMl(O, 0, )\1) =0 and
dM2(0,0,7\2) = 0. Since M, and M2 are Morse families it follows that )\1 =0
and A, = 0.

Now we prove the necessity of condition (22). Suppose that dMl(u, o, )\1) =
=(w, 0,0) and dM2(0, v, >\2) = (0, —w, 0). This gives

(3, %X, %,,0), dM(0, 0,1, X, v)) = 0

for each 7, X, 7\1, 7\2, v, hence A, =0, A, =0 and v = 0 because M is assumed
to be a Morse family indexed over Y @ X. Consequently w = 0.

The last assertion of the proposition may be proved as follows. Let p : PhV —
— Ph'Y be the relation generated by M. Then (v, r, x, p) € Graph p if and only if
there exists )\1, )\2 and v such that dM(y,x,)xl,)\z,v) =(—p,r,0,0,0), or if
and only if there exist A, X, and v such that

Q4) (G5 R,), dM (0, 0, M) + (@, F XD, dM, ©, x, A = (5, 1) — (%, p)
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for each 7, ¥, 7\1, 7\2, U. On the other hand, (y,r, x, p) € Graph (p,°p) if and
only if there exist 7\1, )\2, v and w such that

(25) M, x, X)) = (0, —p, w) and dM,(y,v,\,) = (r, —w, 0).

It is easy to see that conditions (24) and (25) are equivalent. L

DEFINITION 7. Two Fresnel kernels &, € FK(V,X) and .0/_2 e FK(Y, V) are
said to be composable if for each representations

iM ‘M
(26) z=fmél z=f%d%
Ay Az
where M, and M, are Morse families indexed over ¥ @ X and Y @ V, resp., and
1 2
u E[(V @ X)* |1/2® |AF ], mE[(Y®V)* |1/2®| AS |, the density

iMA(y, v, A iM, (v, x,\)
(y’x’)\l’)\z’v)l__)“zylex 2(3v 2)e1 10X N

is integrable on AIGBAZGB'V, Here Koy by is considered as an element of
(Yo X)*|V2g [ (A, ® Ayj@ V)*|.

By Proposition 9, two Fresnel kernels 5‘71 e FK(V,X) and 3“2 cFK(Y, V)
are composable if and only if the relations py=cl(#,) and p,=cl( 3/72) satisfy
condition (22). If 9'1 and .9’—2 are composable then the integral

iM,(y,v,A) iM (v, x, )
(27) [12;1181 2yv>\.zex 1w x, 2y

AreAr0V

does not depend on the choice of representations (26) of % \ and 3"_2 by Morse
families. This follows from the Fubini theorem (Proposition 6). Indeed,

iM,(y,v,Ay) IM (v, x, 7))
f pu e 2 2, v _

Are AoV

iMo (Y, v, A
= uzel 200.m 1) ?1(v,x)
AqeV
does not depend on the choice of the representation of #,; similar reasoning
applies to #,.
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DEFINITION 8. The composition % 5° g , of two composable Fresnel Kernels
371 € FK(V, X) and ,?2 € FK(Y, V) is the integral (27) constructed for arbitrary
representations (26) of % , and 3‘72.

It is immediately seen from Proposition 9 that
(28) A(Fyo F))=cl( F)) o cl(F))

for two composable kernels #, and #,.

If cI(#)) is an epimorphism the &, o %, is always defined since condition
(22) is always fulfilled in this case. We shall show that in this case %, # cor-
responds to the composition of operators (71)5 and (.?2)')/,. To this end we
need the following lemmas.

LEMMA 1. Let % € FK(Y.X). If cI(¥) is an epimorphism then 3“"{,(8()()) =
= S(Y).
Proof. LetQ =cl(#)bedefinedonCCY @ X. Set

Cx = the projection of Cin X,

Cy = the projectionof Cin Y,

X, ={x€X|0exeC}

Y,={yeY|ye0ecC]

Since Q is an epimorphism, Cy, =Y. C induces a linear isomorphism of CX/X 0
and CY/ Y0 =Y/ YO. This isomorphism induces a linear isomorphism A4 : Y X v
where X, C Cy and Y, C Y are such that

Cy=X,2X,, Y=Y 07,
We can therefore parametrize Cby Y, ® Y, & X ;:
C={y®r,®x,@ Ay, €Y ® Cy |y, €Y, ¥, € Yl,xo'eXo}.
In this parametrization Q has the following form
Q(yg, ¥y Xo) =a(xy) + (xg, Byy) +
+c(yg) + q(3)) +<xq, Ey)) + (¥, Fy)),

where a, ¢, g are quadratic functions and B : YO—>X*, E: Y1 —>X6“, F:Y,~ YO*.
The variation with respect to J70 € Y, gives

Yo Dry=B*x,+dc(yy) + Fy,



106 W.M. TULCZYJEW, S.ZAKRZEWSKI

and this is a part of equations for the graph of the relation p = ¢/(%). This
equation has to be satisfied for each ro€ YO*, Yo € Y0 and y, € Y1 by a suitable
x,€X, since p is an epimorphism. This implies that B* is surjective and B is
injective.

Let us choose positive elements u, €| X * |¥2 and py €| Y* V2. Let ¥ =fuy, €
€ S5(X) and ¢ € S(Y?). Then

<¢,9§w>=(w®¢,?)=[V°((¢®¢)|C)e‘9=
C

iQ(¥g.¥1-%g)

= HHy (o, ¥ f(xy, Ay e
YooY, eXy

for certain » € Hom (| (Y ® X)*|V2,| C*|), u €| X |. We have then

ile(yg)+q(y)+ g Fy )l
(6, FEU)= By (Vg e 0 PO x

YooY,

i(a(xy) + (xg, Ey] » ] e i(x,, Byo>

xf [uf(xy, Ay))e

Xo

The mapping S(X) 3 ¢ +—— £ € u - S(Y, @ X)), where

i(a(xp) + (xXp, Ex,))
£, xg) = uf (xg, Ay 0T O

is a bijection of Schwartz spaces. The integral
i(xy,Byy)
(Y. ¥y =f Epxgle 070

Xo

is the partial (with respect to x,, only) Fourier transform of £, evaluated at py=

= —ByO. By the injectivity of B, the mapping u - S(Yl EBXO)OBE —n eS(Y0 ®

® Yl)0 is surjective. Finally, the mapping S(Y,;® Yl)oan > 9 € 5(Y), where
9= yYnei[c+q+ G

is a bijection of Schwartz spaces. We conclude that

SX)2Vy +—FEy=0eS8(Y)
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is a surjective mapping. [ ]

It follows from Lemma 1 that if % satisfies the conditions stated in this
lemma and & € FK(V,Y), then & o%, is well defined as the composition
of operators.

LEMMA 2. If Z €S'(V & A), is integrable on A and f€S(V),, then (fe)Z
is an integrable density on V & A,
Proof. With x defined as in Example 4 the function
VEe A* — €, (w,x) — [2Y (X, N0
is polynomially bounded:
2K X, V0| <P -|X,, [ | <P WS |,
(see formula (11)). It is also continuous. This follows from the inequality
| [Q”K(kaf)](%k) — [ 2V, N )| <
<| [Q”K()_(ka—)—(wf)]‘(") |+ |,[9”K(’)wa)]‘(xk)— [ZXx, N1 00| <
<P IR, f- X, 1+ (2R, N0 = (25, N0,

the continuity of V* > w +— X f € S(¥) and the continuity of [;’?"K(iwf)]A(")
with respect to ». We shall show that

[(fe DX (w9 = [ZVR, ) (.
Indeed, from formula (10) we have for any ¢ €S(V*),,n € S(A*),
Gon (feDZ])=Coh (fe NN =(f{en, X)=
=& =CrTyn=¢ rZpaH=

=f SW) (X, 1, :?’av‘n:j Fw) @, X, N =

V* V*
= f SW)(n, [Zp (X, = f () WIZX (X, 1] (0. .
V* V*oA*

PROPOSITION 10. If &, € FK(V,X), #,€FK(Y, V) and cl(#)) is an epimo-
phism, then
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(Fyo FDE=(F)) o (F)X.

Proof. Let ¥ € S(X) and ¢ € S(Y). It follows from Lemma 2 that for any repre-
sentation (26) of 9'1 and 972, the density X onW=Y e X & AOA,® V given
by

iM2(y, v, 7\2) iMl(u,x, )\1)

Z=¢(y) ¥ (x) u,e e

is integrable. From the Fubini theorem we have

iM LU A 3 ) X,
fgpz j ¢(y)#2e1 2 ﬂf f HletMl(ux)\l):

w YoVeoAa, X "M

=fff¢(y)u2e"’”2(y‘”'*2’((9l)§w)(v):
YV A

=f SO FD U FDT V) = . (F) U FDE 0.
Y
On the other hand,

/9”= f¢(}’)¢(x) f uye M2y MR

w YoX AjoAyel

=98y, Fo F)=($,(F,°o FNY ). =

b) The partial category of Fresnel kernels.

We shall show that vector spaces with Fresnel kernels as morphisms satisfy
all requirements to form a category, exept that one stating that the composi-
tion is defined for each pair %#,, %, such that ?1 €EFK(V,X) and #,€
e FK(Y, V). We say that vector spaces with Fresnel kernels form a partial cate-
gory.

First of all, there exists the identity morphism I, € FK(V, V) ie. a morphism
which is composable with any morphism 3’71 € FK(V,X) and any morphism
F , € FK (Y, V) (in the correct order) and satisfies

Lye 1= %, Frely= %,

This morphism 7, is the Fresnel kernel which corresponds to the identity ({}),

of S(V):
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(9o, 1,)=(¢,y) for ¢,y €S(V).

It is easy to see that (\b,ly) =fpve(y |D), where D is the diagonal of VeV

and v is the composition of the following obvious mappings:
| V* |1/2® i v |1/2_,| V*l“*|D* |

The associativity holds in the sense of the following

PROPOSITION 11. If &, #, is defined and F,o( F,° ¥)) is defined then
also Fyo0 F,),(Fy0 F,) o F, are defined and

'9-;30(9—2°9’.1)=(93°.9_;2)°-971'

Proof. For k=1,2,3 let #,€FK(V,,, V), pp=cl(#,) and let &, =

iM . .
= f/\k uke' * be representations of 97k by Morse families. Then

iMo(vy, vy, 0,) iM (v, A )
2322#91211

2150305, A Ay, 0)) = e 1

is integrable on A, ® A, ® ¥, and |

— O [
Ar8 A8V, 2= Fyo Fy. Also

Z (W, v, Ay, Ay Ay, Vg, U,) =

iMa(vg,00,35) IM4(v4q,04,R,)
e 3433“6 2322,1

eiMl(v2,vl,)\l)
3 2

1
isintegrableon W = A, @ A, o Ayo Vo V,and f, = F o (F,0 F)).

Since p,({0}) C (p,°p(10}), we have p]({0}) N p,({0}) =1{0}. Hence F,o
o &, is defined and

_ iMa(v4, u3; 7\3) iMz(u3, Yy, )\2)
(930 -gz)(v“a vz)— f #38 Mze .

AgeAze Vs

Since Z is integrable on W, the composition (.9730 9’72)0 #, is defined and

equal to f, 2. a

The map
Vi—Vi=V, Fr—FT,

defines a contravariant functor in our partial category in the sense that whenever
F ,o &, is defined, Z | o F] is also defined (since condition (22) is satisdied)
and
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G V- T
(Fyo FN) =F!oF].

This equality follows from the fact if #(y,x) = [, ue™M®*N js a representa-

tion of % by a Morse family, then

Fix,y)= fﬁe""“’”"”

A

is a representation of # T by a Morse family.
The map

V> PhV, Fr+—cl(F),

defines a covariant functor from the partial category to the category LSR (formu-
la (28)).

c) Special morphisms

PROPOSITION 12. For each Fresnel kernel & € FK(Y,X) the following condi-
tions are equivalent:

(i)  for each pair of Fresnel kernels %, % ,, if # o%F and F,o F are
defined then

,/G"lo F = F,oF implies #, =%,

(i)  for each vector space V and any 371 EFK(V,Y), #, o F is defined
(iii) F 1o Fisdefined

Gv) cl(F) is an epimorphism

V) F.(SX)cCS()

(vi) # (S(X))=S(Y)

(vii)) & ,(S(X))DS(Y)

(viii) % _ is an injective mapping

(ix) (F1), is injective.

Proof. Let p = cl(%F).

(ii) = (iii) is obvious;

(iii) = (iv). {0} = p({0}) N p({0) = p({0N;

(iv) = (ii) is obvious;

(i) = (iv). Assume that p is not an epimorphism. Then one can construct an
isomorphism p, # 1,, - such that p,ep =p. Let 970 be such that cl(g"’o) =p,
We have

(Fyo F)=cl(Fg)ocl(F) = cl(F),
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hence % o F =N F for a certain A €C. For # = % /\ we have then &, o
oF =1I,°o%,but Fi# 1.

(iv)=0). If F %= F,°% then cl( F) o cl(F) = cl( F,) o cl(F),
hence cl(#,) = cl( 92) and therefore 91 =2A 972. But A 37209 =F,°oF
impliesA = 1;

(iv) = (vi) by Lemma 1;

(vi) = (v) and (vi) = (vii) are obvious;

(vi) = (viil) is easy;

(v) = (iv), (vii) = (iv) and (viii) = (iv). Let us assume that p is not an epimor-
phism. Then p(X)% contains non-zero elements. Let y @ r €PhY be such an
element. From Lemma 3 (see Appendix) we have

1
r——,g))g:O.
( i 7

From this equation we see that for any y € S(X)
1
-t fes-o

No nontrivial element % ¢ of S(Y) satisfies this equation: this contradicts
(iv) and (vi). The same equation implies that for each x € S(Y)

1
9_(r+ — .Yy)x= 0
i
and this contradicts (viii).
(viii) = (ix), since

(29) (FH,x=(F_0. .

DEFINITION 9. A Fresnel kernel is called an epimorphism if it satisfies the condi-
tions stated in Proposition 12.

One can easily state the «adjoint» version of Proposition 12, giving conditions
for a Fresnel kernel % which are equivalent to

(ivh) cI(#) is a monomorphism.

Such kemnels are called monomorphisms. Then we introduce also isomorphisms
- kernels bieng at the same time mono - and epi-morphisms. The following propo-
sition characterizes isomorphisms.
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PROPOSITION 13. For % € FK(Y,X) the following conditions are equivalent:
(i) & is an isomorphism

(ii) there exists X > O such that F 7 o =A Iy and FoF ' = 1y
(iii) there exists A > 0 such that
X XegXyt _ Y
(Fy Y#gX = = MUy ) and ?Y(fY)T =Ny
(that is to say, F% y IS proportional to a unitary operator).
Proof. (i) = (ii). We have
(30) A FToF)=cl(F) ocl(F)=1 .y and cl(.éf'-OKQT):lPhY

Therefore # 1o # =\[, and FoF " =n [, Butn =X, since
NF=AFoFNoF=Fo(FToaF)=2

The opereator (9 X)o "X =My )X is positive, hence A is positive.

(i) = (i). It is easy to show that (30) is satisfied and it follows that ¢/(%) is an
isomorphism.

(ii) <= (iii) is obvious. ]

Epimorphisms, monomorphisms and isomorphisms form separately three
true categories, homomorphic with the corresponding subcategories of LSR.
The following decomposition theorem holds:

PROPOSITION 14. For each Fresnel kernel ¥ there exist an epimorphism F v
an isomorphism .9"'2 and a monomorphism ¥ , such that & = F 0 F,° F ..
If F € FK(X, X) is self-adjoint then we can set ¥ ;= F |.

Proof. Let cl(%#) =r; °opyor, be the canonical decomposition of c/(#). Let
us identify the reduced symplectic spaces corresponding to r, and r, with certain
phase spaces so that we are dealing only with linear phase relatlons Let #,

3“2 besuchthatcl( P =rpel( 2)—p0andcl( #,) =r,. Then
9=)‘J3 Fro F\=F3° Fy° Fy»

where &, = N %,. If # isself-adjoint, we haver, =r,. m

DEFINITION 10. A Fresnel kernel A € FK(X,X) is called positive if for each
Y ESX) WAk yrY=0.

PROPOSITION 15. A Fresnel kernel A is positive if and only if there exists % such
that A\=FToF.
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Proof. If A is positive then it is also self-adjoint, by the standard reasoning.
Consider a decomposition A:?f o #,° #, as in Proposition 14. Let V be
such that ﬁoeFK(V, V). (#,), is proportional to a unitary operator and it
is a positive operator by the positiveness of A. It follows that &, = )\IV with

0=
A > 0. As F one can then take F =V 7,

The sufficiency of the condition is obvious. n

From Proposition 15 it follows that if A is a positive Fresnel kernel then
cl(A) is positive.
d) Quotient objects, subobjects and equivalence

The following proposition characterizes equivalent quotient objects in our
partial category (cf. {2]).

PROPOSITION 16. Let 5‘71 € FK(Y,, X), #,€FK(Y,, X) be two epimorphisms.
Then the following conditions are equivalent :
(i) there exists an isomorphism ¥ € FK(Y2, Yl) such that

F,- Fo F,

(i) there exists \> Osuch that FJ o F,=NF[o F,

(iii) Im (F )} =Im (FDY

(v) Im (F)) =Im (F,)}

(v) ker (F)¥ =ker (F,)}

(vi) cl(#))and cl( 3‘72) are isomorphic quotient objects of PhX.

Proof. (i) = (ii). 9‘;0 9‘2=(ff°9T)°(§° F))= 9";‘ °MY, ° #, =)\91*o
° 91

(i) = (iii). Im (£} = Im(F] o F)E=Im(F ] F)DE =Im (F)y

(ii) = (iv) by formula (29)

(iv) = (v) because ker (9’1)";] = [Im (9'1);,']0

(v) = (vi). Forj =1, 2 set Ki =cl( :071.)(Ph YI'.). From Lemma 3 (Appendix),

It is easy to see that the latter equality is equivalent to
! X
g
p— l— L |SX) C ker(Jl)Yl.

By the assumption this is equivalent to
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1
(p -7 .‘i"x)S(X) Cker (£},
and also to

1
(p—f'.?x)g'—;:().
1

The latter equality is equivalent to
xepek 2§

(by Lemma 3). It follows that K1 = K2.
(vi) = (i). There exists an isomorphism p such that cl( F,) =pocl( #,) Let
# , be such that cl( 370) = p. We have then cl(#,) = cl( ?00 #,), hence 9"2 =

=)\Fioo §1=9‘°3‘71,where F =\ %, n

It follows from Proposition 16 that the equivalence classes of isomorphic
quotient objects are in one-to-one correspondence with positive Fresnel kernels
modulo a multiplicative constant (point (ii) of the proposition). The description
of subobjects is similar and can be obtained by passing to adjoint kernels.

6. UNITARITY CONDITION: A MODIFICATION OF THE PARTIAL
CATEGORY

In the partial category considered so far, ismorphisms are kernels proportional
to unitary kernels (Proposition 13). Now, let us consider a partial category
obtained from the previous one by removing all isomorphisms which are not
unitary kemels. We refer to this new partial category as to the partial category
of normalized Fresnel kernels. Thus, isomorphisms in this modified partial catego-
ry preserve scalar products - the structure naturally existing in spaces S(X).

a) Modified description of isomorphic quotient objects and subobjects

In the partial category of normalized Fresnel kernels, equivalence classes of
isomorphic quotient objects (also subobjects) are in one-to-one correspondence
with positive Fresnel kernels (no arbitrary constants appear).

b) Scalar product Schwartz spaces associated with positive kernels
With any positive A € FK(X, X) we associate the space
S(X, &) = SCO/ker 4, .

This is a Fréchet space as the quotient of a Fréchet space by a closed subspace.
There is a scalar product on S(X, A), defined by
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([\DI]I [w2]>A = (¢1|A+ l1’2> for wla \1/2 GS(X)a

where [V] denotes the projection of ¢ € S(X) in S(X, A). The non-degeneracy
of the scalar product follows from Proposition 15:

O=W|A, WM=W{(FI) F W=(F V| F ¥

implies ¢ €ker er =ker( #, )t 5‘; =kerA,. Here # €FK(Y,X) is any
quotient object belonging to the equivalence class distinguished by A, i.e. A =
=% T o %. For any such % the continuous linear map §+ : S(X) - S(Y) defines

a continuous bijection
31 F. 25X, 08— SN

which is a topological isomorphism, by The Inverse Map Theorem. This is why

we call S(X, A) a Schwartz space. In addition, 37+ , Dreserves the scalar product:

(81190, =CF, 20| £, ,8y) for ¢, 6, ESIX, A).

7. THE PARTIAL CATEGORY OF REDUCED SPACES

a) Reduced spaces

DEFINITION 11. If A € FK(X, X) is positive then the pair (S(X, A), ¢ | -)A) is
called the reduced space of S(X) with respect to A.

Note that for A = Iy the reduced space is identical with S(X) (with the stan-
dard scalar product).

It is clear that a general reduction leads out of the «phase» framework. Still,
we can use «phase charts» of S(X, A) as given by various possible % A in for-
mula (31). The following proposition shows that the transition from a «chart»
to another «chart» is given by a Fresnel kernel.

PROPOSITION 17. Let # € FK(Y, X), 7 eFK()7, X) be such epimorphisms
that FYo F =% 1o % = A Then there exists a unique unitary Fresnel kernel
¥ € FK(Y,Y)such that

=%

_ F -1
F L= F. 0 T U(F,

o=
Z, +,A

N

(here [A, ] 1:Im A, > S(X, A)).

Proof. By I:roposition 16 there exists a unique isomorphism % € FK (?, Y) such
that # = % o #. The proposition follows from two equalities,
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F -1 -
{J+,A[g+,A] } 9’+ - '9'_7'

and
{(FLIHFN,Y F, = Z, 0,170, = Z,. .

The Fresnel kernel 3% defined in Proposition 17 will be denoted by

~

(32) Fo, FH.

For % = # € FK(Y, X) we have FoF't =1y

b) Fresnel relations

DEFINITION 12. A Fresnel relation from S(X,, A)) to S(X,, A,) is an equivalence
class of triples ( #,, F 5 F,)), where #,» &, are epimorphisms such that 3?1* °
o F =N, FloF,=A, and F, EFK(cod #,,cod #,), the equivalence
relation ~ being given by

~

(%, Fp3 Fy) ~(Fy 57‘1; ﬁzl) if and only if
9:21:('@2°A2'9'—;)° Iy o (Fy 24, ).

Here cod % denotes the codomain of % € FK(Y, X) and is defined by
cod & =Y.

The composition of Fresnel relations is defined by the composition of the
Fresnel kernels representing them (if they are composable):

(Fy Fy Fil o (Fp Fps Fo)= (Fs. Fy3 Fyyo Fy)

Reduced spaces with Fresnel relations and the composition defined above
form a partial category. Further discussion of its properties follows the same
pattern as in the case of the partial category of Fresnel kemels. For example,
the adjoint is defined as follows

In the particular case when A= IX,’ we have S(Xl, Al) = S(Xl) and it suffices
to use the «identity chart» A, = IX] in Definition 12. The same applies to the
case when A2=IX2. In particular, Fresnel relations from S(X 1) to S(X 2) are
simply Fresnel kernels belonging to FK(X 2 X D-

¢) Reductions

DEFINITION 13. The reduction relation from S(X) to S(X,A) is the Fresnel



THE CATEGORY OF FRESNEL KERNELS 117

relation
R, =P L, F)NFT°F =7}
This definition is correct, since for #F T e F=A = 3*2 T oﬁ we have

oAyT)oy—:(ﬁo

W

F=( A

and therefore (#, I, ; ) ~ (%, ;% ).

8. THE CATEGORY OF ISOMORPHISMS OF REDUCED SPACES AS A
GENERALIZED CATEGORY OF FRESNEL KERNELS

a) Images and coimages in the partial category of Fresnel kernels

DEFINITION 14. (cf. {5]) A coimage of a Fresnel kernel % is any epimorphism
& , such that:

l° F= #,0 #, foracertain &,
and

2° for any decomposition F =F 0% |, where 3
there exists a morphism %, o Such that / = 9:0

| is an epimorphism,

PROPOSITION 18. Each Fresnel kernel % has a coimage. An epimorphism .7
is a coimage of F if and only if there exists a monomorphism ? such that

F = F,0 F,.

Proof. By Proposition 14 one can find an epimorphism % , and a monomorphism
./' such that & = 5© J . We shall show that % 1s a coimage of #. In fact,
if # 1s an eplmorphlsm such that

r

F=F o F|,
we have
‘?'Zz‘/"()?;’

where % ’2' is an epimorphism and % ; is a monomorphism. Then from the equali-
ty F=F 0(F 0 F )= F,o F, it follows that ker (F) o F ), =ker ¥,
(see (21) for notation). From Proposition 16 it follows that there exists & "
such that F =F "o (F o F N=(F "o F)oF = F,oF, Now if we
assume that & | is also a coimage of & then # | =%"o %, for a certain # .
Since # | =F o F | =(F,oF)o F,, it follows that F oF' =1, F, is

an isomorphism, %,) = %, & is a monomorphism and & = F, 0 F . =
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It is easy to see that classes of coimages of Fresnel kernels coincide with classes
of isomorphic quotient objects in the partial category of Fresnel kernels.
Similar treatment as above applies to images.

b) Fresnel kernels and isomorphisms of reduced spaces
To each Fresnel relation ¢ = [( % ‘7' F/‘], F)]. from S(X,, A)) to S(X,, A,)
there corresponds a unique Fresnel kernel Fe FK (X,, X,) given by

F= ﬁzo ngo 91=2220¢0'@A1.

If ¢ is an isomorphism (i.e. .9'721 is an isomorphism) then % has the same coima-
gesas A, and the same images as A,

Conversely, for & € FK(X,, X)), A, having the same coimages as # and A,
having the same images as % , there is a unique decomposition

F=R Zz ogo ,%A]
where ¢ is an isomorphism.

¢) The generalized category of Fresnel kernels

Isomorphisms of reduced spaces form a category. We shall describe this category
in terms of Fresnel kernels. To this end we use the results of the preceding para-
graph. Formally, we introduce a new category:

1° objects are reduced spaces,

2° morphisms from S(X, Al) to S(X 2 Az) are Fresnel kernels with coimages
and images specified by b, and h,, respectively,

3° the composition of two mrophisms F,=R] © ¢ . Fg= R,
oppoR1 , is the Fresnel kernel % FeFK(X;, X)) deﬁned by

§+:§H+A;+fl7

(notation as in (21)).

Let us check that the above formula corresponds to the composition of isomor-
phisms of reduced spaces. If #,=F]c %, o # and ¥ = Flo Fpo Fy
then

-1 _ -1 —
'%+A2+9~'I+_9_g+9‘_32+9—2+A2+9_2+9.21+3’-1+_
Gt
=F), Fn (P, FD, Py F.=F 5 Ty P Fuy
=(Fio Fyo Fn°F), 23°(¢u°¢1)°9'2,-

The described composition generalizes the operation in formula (32). Hence,
we denote it by the same symbol

% oAz 'gl.
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Let us note that each Fresnel kernel is represented by a morphism in this
category. However, the representation is not unique (one can multiply A, and
A, by positive numbers). Therefore reduced spaces with Fresnel kernels as mor-
phisms form what is called a generalized catetory (see [6]), because of non-
-uniqueness of the domain and codomain.

9. APPENDIX

PROPOSITION 19. Let X be a Frenel distribution on a vector space V. Let X be
of the form (20). Let L be the Lagrangian subspace of PhV generated by Q.
Then

1

vewel ifandonlyif(w——. .?U)Jf=0.
i

(here & , denotes the derivative with respect to v).
1
Proof. (=). Since w|C=dQ(u), we  have <\l/,(w— 7 .?u) J{’>=
1 . 1 .
=fc V°((W + 7 yv) ‘l’lc)ela =ch°(‘p|c)(W._T E’V) e’? =0 for y €S(V)
(<) Suppose(w— —,—,fv)f=0. Then foranyxep €L,
i
1 1 |
0= W—f.?v,[’—f "?x X = - wV(U+w,x+p)J(.
i i i
It follows thatvewe LY = L. ]
LEMMA 3. If F€FK(Y,X), p=cl(F), K=pX), theny ®r €K 8 if and only

if.(r—-lf Z’y) F=0.
i

Proof. Both conditions are equivalent to

y @re 00 &Graph p. s
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