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Abstract.Symplecticrelationsandtheir generatingfunctionshavefoundextensive
applicationsin classical mechanics.In thepresentpaperweundertakethestudyof
the correspondencebetweengeneratingfunctions of symplecticrelations and
kernelsof integral operatorsof quantumtheories. As a first step we study this
correspondencein the caseof linear symplecticrelations generatedby quadratic
functions. The theory is sufficientlycomplicatedeven in this simplecase.Addi-
tional complicationsmust be expectedin thegeneral nonlinear theorydueto the
fact that the compositionof regular nonlinear symplecticrelations is in general
singular and that nonlinear symplecticrelations in general do not haveglobal
generatingfunctions. The presentpaperis a continuationof the studyof linear
symplecticrelationsundertakenin L2].

1. LINEAR SYMPLECTIC RELATIONS

A symplecticform on a vectorspaceP is a bilinearskewsymmetricnon-dege-

nerateform onP.

A symplecticspaceis a pair (P, w), whereP a vectorspaceand w is a symplec-

tic form onP.
Let (P, w) be a symplecticspace.If E is a subspaceof?then thesubspace
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{pEPIW(e,p)=O foreach eEE}

is denotedby E ~. A subspaceE of P is said to be isotrojiic if E § D E, Lagrangian

ifEi =EandcoisotropicifE~CE.

For two symplecticspaces (Pj, ~) and (P2’ w2) we denoteby w1 ~ the
symplectic form on .Pj ~P2 defined by (w1 ~ w2)(p1,p2)= o.1(p1) + w2(p2) for

p1 EP~,p2EP~.The symplectic space~ ~~2’ ~1 ew2) is called the direct sum
of spaces(Pj, w1) and (P2. wi).

a) The categoryof linear symplecticrelations.

A linear symplecticrelation is a triple p = ((F2, 0.12), (Pj, w1),R) where~ w1)

and (F2,w2) are symplectic spacesandR is a Lagrangiansubspaceof (P2. w2) ~

~ (P1, — w1). In this casewesay that p is a linearsymplecticrelation from (Pj. w1)
to (F2, w2) andwe denotethis by

p :(P1,w1)—÷(P2,o.2).

R is calledthegraph of p (we also write R = Graphp).

Symplecticspaceswith linear symplecticrelationsform a category.We denote
this categoryby LSR.The compositionin LSR is the usual compositionof rela-

tions. The identity morphism from (F, c.) to (P, w) is given by the identity rela-

tion:

l(PW)=((P,w),(P,W),R) with R=~p~p’EPWPIp’=p}.

One can show that if ~ = ((P2, w2), (Pj, w1),R) is a linear symplectic relation
and E is a subspaceof P~then

p(Ei) = p(E)
1,

where p(E)={p
2EP2lthereexistseEE such thatp2~eER} is the imageof E

underp. Hencefor E isotropic(resp.Lagrangian,coisotropic),p (E) is also isotro-
pic (resp.Lagrangian,coisotropic).

b) The functor <<t>>. Foreachlinearsymplecticrelationp = ~ w2), (F1, o.1), R)

weintroducetheadjoint relation p~= ((F1, wi~’~~‘2’w2), R t), where

Rt = {p1 p~EP~P2 p1 ER}.

Themap

(P,w)h~_+(P,w)t=(P,w),pH~~~pt

definesa contravanantfunctorin LSR.We have(pt)t = p for eachrelationp.

c) Special morphisms. A linear symplectic relation p : (Pj, w1) —~ (P2~w2) is

saidto be
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(i) an epimorphism, if for any a : (F2, w2) -÷ (F, w), 13: (F2, w2) —~ (F, w)

aop=c3op implies a=f3

(ii) a retraction, if thereexistsa : (F2, w2) -÷ (F1, w1) suchthat p o a =

(it) a monomorphism,if for a,13 : (P, w)-÷(P1, ~)

poa=po~3 implies a=,@

(ut) a coretraction, if there exists a : (F2, w2) -÷ (F1~w1) such that a op =

=

(—) an isomorphism,if it is at the sametime a retractionand a coretraction.
In LSR conditions(i) and (ii) are equivalent.They are also equivalentto each

of the following conditions:

(iii) P
0P= 1(Pw)

(iv) p(P
1)=F2.

Similarly (it) and(ut) areboth equivalent to

or(~~it)~
0P =

(ivt) pt(P
2)P1.

The functor <<tx~ changesepimorphismsinto monomorphismsand vice versa.
For any isomorphism p we havep~= pt. Symplecticspaceswith isomor-

phisms form a subcategoryof LSR. The set of all monomorphismsand the

set of all epimorphismsprovide two otherexamplesof subcategories.

d) Reductions. For any coisotropic subspaceK in a symplectic space(F, w)

the reducedsymplecticspace of (F, w) with respectto K is a symplectic space

~
1’iKl’ WIKJ). The space~IKl is the quotient space K/Kt and the form is

definedby

wIKIQ~l,p
2)=

where ~i,~2EF1Kl and p1,p2EF are such that p1 E~j and p2E~2.The triple

rIKl=((PIKI, WIK), (F, w), R) where

R ={~pEFIK~FlpE~},

is a linearsymplecticrelationcalledthe reduction relation associatedwith K. This
relationis an epimorphism.

The following decompositiontheoremholds:
If p : (F1~w1) —* (P~,w2) is a linear symplecticrelation, then thereexistsa uni-

queisomorphsimp0suchthat

p =rlKlopOorIKl,

whereK1 = pt(P2), K2 = p(P1).
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e) Selfad/oint idempotents.A linear symplectic relation x : (F, w) -~(F, w) is

called selfadjoint if x~= x. The following proposition is a simple consequence

of thedecompositiontheorem.

PROPOSITION1. If x : (F, w) -+ (F, w) is selfadjoint, then the isomorphism x0
appearingin thedecomposition

x = rIKIoXOorIKI, K = x(P)

satisfiesx °x = 10 0 ~~lK)’ ‘~ lKl~

Thenext propositioncharacterizesselfadjoint idempotents.

PROPOSITION2. Let 6 : (F, w) —+ (F, w) be a linear symplecticrelation and let

K = 6 (F). The following conditions are equivalent:
(i) 6t=6 and 6o6=6

(ii) 6 = rIK] o

(iii) there existsp : (P, w) -+ (F1, w1) suchthat 6 = pt op.

Proof (i) (ii). Let r TIK]. From Proposition 1 it follows that

6=rto& or, where 6 o6 =10 0 0 (“IKl’~IKl~

Hence,6=6o6=rto60ororto60or=rto&oo6o,r=rtor.

(ii)=~(i). Forr =rlKI and6 =rtor, we have

6 ~ (rt o r)t = rt or = 6

and

6 o 6 = (rt or) o (rt or) = rt o (r oTt) Or = r~or = 6.

(ii) ~ (iii) is obvious.

(iii) ~ (ii). Let K’ = pt(Fj), r = Then p = ~Lo r, where p is a monomor-

phism,hence6=~to1jtopor=rtorandK’ =K.

DEFINITION 1. A linear symplectic relation 6 : (P, o.,) -+ (F, w) is calledpositive,
if hereexistsa linearsymplecticrelationp suchthat 6 = pt o p.

It follows from Proposition 2 that a relation p is positive if and only if it is

selfadjoint and idempotent.It follows also that positive symplecticrelationsare

in one-to-onecorrespondencewith coisotropicsubspaces.
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2. QUADRATIC FUNCTIONS

We denoteby V” the dual spaceof a vectorspaceV. For w E V* andv E V

the valuew(u) of w on u is denotedalso by ~ii, w). If X is a subspaceof V then
X°={w E V” (x, w) = 0 for x EX} is called the annihilator of X (in V*).

The identity mapping of V onto itself will be denotedby t~. The mapping

n (— ~) : V n V” -* V ~ V* will be denotedby r~.

a) Thephasefunctor
A linear relation is a triple a = (Y,X, A), where X and V are vector spaces

andA is a subspaceof Y E X. Vectorspaceswith linearrelationsform acategory,

denotedby LR. Thecompositionin LR is the usualcompositionof relations.The
identitymorphismfrom V to V is given by ~

Let V be a vectorspace.The phasespaceof V is the symplecticspacePhV =

= (V ~ V*, wv,), where is the canonicalsymplecticform on V ~ V*:

~ w, v1 u w1) = w(v1)— w1(u) = (U1, w) —(v, wi).

If X and Y are two vector spacesthen thesymplecticspacePhX nPhY canbe

canonicallyidentified with the phasespacePh(X n Y). We shallusethis identifica-

tion in the sequel.
To each linear relation a = (Y, X, A) therecorrespondsthe linear symplectic

relationPha = (PhY, P/tX, R), where

R = (~yey*e T~)(AnA°).

HereA ®A°CFh(YffX)=FhYG~PhX.

The map

VH—÷PhV,aF—+Fha

is a covanantfunctorfrom LR to LSR. It is calledthephasefunctor.

b) PhasespacesandgeneratingfunctionsofLagrangiansubspaces
Let L be a Lagrangiansubspaceof a phase spacePh V and let C = 7r~(L),

where 7r~is the projection of V ~ V* onto V. The generatingfunction of L

is the quadraticfunctionQ on C definedby

Q(v) = — (v, w),
2

wherev E C andw is an elementof V* suchthat v u w EL.

Conversely,a quadraticfunction Q on a subspaceC of Vgeneratesa Lagrangian

subspaceL of Ph V as follows:
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L__{v~WEVnV*IvEC and (x,w)=(x,dQ(u))foreachxEC}.

HeredQ denotesthe mappingfrom C to C* definedby

(x, dQ(v)) = Q(v + x) — Q(v) — Q(x).

The above formulae establish a bijective correspondencehetween Lagrangian
subspacesof PhVandquadraticfunctionson subspacesof V.

If C = V then bothL and Q are said to be regular.

c) Linearphaserelations and their generatingfunctions
A linear phaserelation is a linear symplectic relation from onephasespaceto

another.Phasespaceswith linearphaserelationsform a categorywhich we denote

by LPR. This is the full subcategoryof LSR whoseclassof objects consistsof
all phasespaces:

Ob(LPR) = Fh(Ob(LR)).

If p =(PhY,PhX,R) is a linear phaserelation then R’ =(c(y~~~)nTX)(R)

is a Lagrangiansubspaceof Ph V ~ PhX= Ph(Y uX). The generatingfunction of

R’ will be called the generatingfunction of p and will be denotedby Q~.This
function is defined on the subspaceC~= lr}. ~ (R). The adjoint relation is
generatedby the function Q : C -÷ lR, where

Pt Pt

C~={x ey EX ~ nx E C)

and

Q ~(x~y)=_Q(ynx).
P

Notethat C~~0= Graph(a) and = 0 for eachlinearrelation a.

d) The categoryof quadraticfunctions
We now introducea new category,calledthe categoryof quadraticfunctions

and denoted by QF. This categoryis isomorphic to LFR. It is obtainedfrom
LPR by replacinglinear phaserelationsby their generatingfunctions.The formal
definitionof QF is the following:

(i) objectsof QFarevectorspaces,
(ii) morphismsfrom a vectorspaceX to a vectorspaceV are quadraticfunc-

tions definedon subspacesof V n X. The set of all suchfunctionswill bedenoted
byQF(Y,X),

(iii) the composition of two morphisms Q2 E QF (Z, Y) and EQF(Y,X)

will be denotedby St~(Q2 + Q1). It is definedby the following variationalprin-
ciple. Let and be defined on C1 C V nX and C2 C Z ~ Y, respectively.

For z nx EZ IPX let Y~=~yE Viz IPy eC2,y
t~xEC

1}and let the function
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= Q2(z ny) + Q1(y IPX).

ThenSt~(Q2 + Q1) is definedon

C={z IPX EZ IPXI ~ andQ~~~hasastationarypoint}

by

St~(Q2+ Q1)(z ex) =

wherey is a stationarypoint (critical point) of Q~

The symbolSty, refers to the fact that St~(Q1 + Q1) is definedas the collec-

tion of stationaryvaluesof the functionsQ~

e) Morphismswit/i zero-dimensionaldomain
Each Lagrangian subspaceL of a symplectic space (P, w) definesthe linear

symplecticrelationp1 : {0}—~(F, w), given by theformula

Graph~L = L IP {o}.

Conversely, if p : {0}—~(P,w), then p = for L = p({0}). If (F, w) =PhV,

then is a linear phase relation and the generatingfunction of L coincides

with the generatingfunction of ~L (if we identify V andV IP {0}). In otherwords,

quadratic functions on subspacesof V can be identified with the elementsof

QF(V,{0}).
Now let K be a Lagrangiansubspaceof P/iA and p :PhA -*PhV. If L = p(K)

then = ° PK~Combining this with the composition rules in QF we obtain
the following formula for the generatingfunctionof L:

(1) = StA(QP + QK~

f) Morsefamilies
Let V and A be two vectorspaces.Let M be a quadraticfunction on V IP A.

M is uniquely representedin the following form

(2) M(v, A) = Q0(v) + — (A, AX) — (A, By),
2

where v E V, XE A, Q0 is a quadraticfunction on V, A : A —~A*, A* = A, and
B : V-+ A*. Let p :PhA -*PhV be the linear phase relation generatedby the
quadraticfunctionM (i.e.M = Q~).

Translationsparallel to A and leavingM unchangedform a subspaceof A,

denotedby A0. In otherwords,

A0={X0EAIM(v,X+ X0)=M(v,X) for eachvEV, XE A).
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PROPOSITION3. Thefollowing conditionsare equivalent

(i) A0={0}

(ii) (ker dM) n ({0} ® A) = {0}
(iii) Im A + Im B = A* (Im A denotestheimageof A)

(iv) pt({O}) fl (An ~0})= {o}.

Proof (i) (ii) A0 = kerdM I{o} eA

(ii) (iii) dM I{o}~A = A + (~B*) is injective if and only if [A + ~ B* )]* =

=A + (—B)issurjective
(ii) ~: (iv) follows from the equality

pt({O}) n (A IP {0}) = (ker dM I{o}eA) w {o}.

If the conditionsof Proposition3 aresatisfied,we say thatM is a Morsefamily
of functions on A indexedover V. The LagrangiansubspaceL = p(A IP {0}) of

PhV is said to begeneratedby the Morse family M. By formula (1), the generating
functionof L is givenby

Q = StA(M + 0).

The conditions listed in Proposition3 meanthat for each v EC = 1r~(L)there

is exactlyonestationarypoint.

PROPOSITION4. Let p : Ph A -* PhV be the linear phaserelation generatedby a

quadratic functionM on V IP A. Let M begivenby formula (2). Then thegenerat-

ing function Q of L = p(A IP{O)) is defined on C = B~(ImA), and for nEC,

Q(v) =— —(X,Bv) + Q0(u),

whereA is any elementof A suchthat A A = By.

Proof vnwnAnxEGraphpifandonlyif

—x=AX—Bv and w=dQ0(v)_B*X.

HencevIP w E p (A IP{0}) if andonly if thereexistsA EA suchthat

AA=Bv and w=dQ0(v)_B*A.

The conditionfor v is therefore

BvEImA, or vEB
1(ImA).

ForvE C wehave



THE CATEGORY OF FRESNEL KERNELS 87

1 1 1 1
Q(v) = — (v, w) = — (v, dQ0(v))— — (v,B*A) = Q0(v) — — (X,Bv). U

2 2 2 2

Morse families provide an alternativerepresentationof Lagrangiansubspaces

by quadraticfunctions.

PROPOSITION5. Each Lagrangian subspaceL of Ph V is generatedby a Morse

family indexedoi’er V.

Proof Let Q be the generatingfunction of L definedon a subspaceC of V.

Weset A = C°anddefine

M(v. A) = —(v, A) + Q(v)

where V E V, A E A, andQ is any extensionof Q to the spaceV. From Proposi-

tion 4 weseethatM is a Morse familly generatingL. •

Morse families can be used to generatelinear phaserelations.A linear phase
relation p : P/tX —~ F/i V is said to be generated by a Morse family
Al :(YEPX)IPA—*lRifSt~(M)=Q~.

3. SCHWARTZ SPACESAND INTEGRATION OF DISTRIBUTIONS

a) Densitieson a vectorspace
Let V be a vector spaceof dimensionit. Forany realnon negativea we denote

by V* 10 the complex one-dimensionalspaceof mappingsp : A V —~~ suchthat

p(tw) = It I°p(iv)forte IR, w EA V (00 = 1 is assumed).I V* is denotedalso

by V* . Theproduct p1 p2ofii1 El V* ~ and ~2 El V* 02 definedby

(p . p2)(w) = p1(w)p2(w)

belongsto V* a + u~ We can also divide E V* 101 by ~2 El V* 02 if a2~ a1

and ~ 0. Thequotient -~-definedby
P2

p1(w)
— (w) =

/12

for non-zerow EA V. belongsto V* 01 02~

An elementp of V* is said to bepositiveif p(w) is positivefor eachw ~ 0.
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Positive elementsof V* 0 can be raisedto non-negativepowers. The power
p7isdefinedby

=

andbelongsto V* I0~.

Any isomorphismA : V -+ W of two vectorspacesgivesrise to an isomorphism

A : V* 0 W~’0 (denotedby the sameletter).
If V = X IP V then I V* I” = I X~~® )T* °• Here the tensor product p ®

of p EIX* ~ and n El V* IU is identified with an elementof V* 0 as follows:

m n—rn
(p®v)(~Afl=p(~)v(~),~EAX, VE A Y, m=dimX.

We also havea canonicalisomorphism

I V*IO=IX*Ia®I(V/X)*lO.

Thisisomorphismis definedby

IV*IO=IX*IU®IV*IO=IX*IOnI(V/X)*Io,
where Y is an arbitrarycomplementof X in V.

Au-densityon Visamappingfrom VtoIV*l.

- densities are called densities and — - densities are called half-densities.0 -

densitiesare simply complexfunctionson V.

We shall often identify elementsof V* with constanta - densities.Thereis

a constant positive density associatedwith each linear coordinate system
(v1,. . . , y”) of V. This density denotedby du1. . . dy’1 is characterizedby

a a
dv1...dv~ ~ 1. -

an’ an’1

With respect to a coordinatesystem(v’, . . , v’1) a a-density~ is represented

by a functionf suchthat

~=f~(dv’. ..dv’1)°.

Using a different coordinate system(i~ ii’1) we obtain for the same a
functionf suchthat

v’1) 0

f=fl Hii”)

Densities on a vector spaceV can be integrated.The integral of a density~ is
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calculatedfrom the formula

f ~= f f(v1 v~)dv’.

V IR”

in any coordinatesystem(v’, . . , v’~)in V.

Themodulusof a form ~ E A V* is thedensity I I definedby

l~I(~v)=I~(w)Ifor wEAV.

b) SchwartzspacesSandS’associatedwith a vectorspace

Let V be a vector space.By S(V) (the Schwartzspaceof V) we denotethe
spaceof smooth,rapidly vanishingat infinity half-densitieson V. More exactly,

a half-density ~1ion V belongsto S(V) if

(i) i~i : V-+I V* is a C~-mapping,

(ii) for any differentialoperatorA with polynomialcoefficients

II~IIA=sup A~1(v)I<oo.
U E V

Here I I denotesa fixed norm on V* 1/2.

The space S(V) is endowedwith natural topology induced by seminorms

II IA~If we choosea coordinatesystem(v1 v’1) on V, then the sametopo-

logy canbedescribedasinducedby the following family of norms:

(3) liP II~=sup Iv°D~iP(v)I,
vEV

where a = (a~ an), i3 = ~ I3,~)are multi-indices and v0D
3 denotes

the differential operator

n n I a ‘~ij~(yk)Ok.11 ~...

k=1 1=1

We denoteby S’(V) the dualspaceof S(V):

S’~V)= S(V)’.

If .KES’(V) and iP ES(V) then the value of ~‘~on iP is denotedby (iP,~V).

S’(V) is endowedwith the weak topology, i.e. the one inducedby mappings
)r iP,~K)foriP ES(V).

An element iP of S(V) may be treated as a functional on S(V) as follows:
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(4) S(V)~iP~(iP,iP)= I
‘Iv

This definesacontinuousinclusionS(V)CS’(V).

Elementsof S’(V) arecalledgeneralizedhalf-densitieson V. Thescalarproduct

(0IiP)ofo, ~ES(V)isdefinedby

(5) (01 iP)=(~ iP)=f~.iP~

V -

where ~is the complexconjugateof 0. Note that (01 iP) = (~,iP) is definedalso

for iP ES’(V).

If X andY aretwo vectorspaces,then

S(Xn Y)=S(X)~S(Y)

and

S’(XIP Y)=S’(X)~S’(Y),

where — and denotesuitable completions of algebraictensorproducts (see

[3]).
Each element ~( of S’(X IP Y) defines a continuous linear mapping

X~:S(X)-+S’(Y)by -

for 0 E S(X), 0 E S(V). It follows from the kernel theoremthat all continuous
linearmappingsfrom S(X) to S’(Y) are obtainedin thisway.

Togetherwith we have : S(Y) -* S’(X), definedby

(6)

for 0 ES(X), OES(Y).

c) Integration conventions

If 0, ~ E S(V) then the density 0~0 is Lebesgueintegrable.The integral in

formula (4) is the ordinary Lebesgueintegral. We intend to use the integration
symbol to denoteconditionallyconvergentimproperintegralsand alsoto denote

operationswhich are integralsonly formally in ageneralizedsensedefinedbelow.
The generalizationin basedon the observationthat for a Lebesgueintegrable
density~on V
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f
V

where~ is the Fouriertransformof ~:

(7) ~(w)= fe1<~’~(v) for wE V*.

V

We first introduceauxiliaryspacesassociatedwith a vectorspaceV:

(8) S(J
T) = p S(J~)={piP I 0 ES(V)} (Schwartzdensities)

and

S(V) 0
(9) S(V)

0= = — I 0 �S(V) (Schwartzfunctions),
P P

wherep El V* 11/2, p ~ 0 (anyp * 0 gives the sameresult).

Note that the multiplication and the division by p is also defined for )( E

ES’(V):

S’(V)~~‘~÷ p ~)fE [S(V)0]’, where (f,p ~)~) (f. p,~) for fES(V)0

S’(V)~~ —~E[S(fl1]’, where (~,~) = (~,~r)for ~ES(V)1.

In analogy with (8) and (9) the imagesof these mappingsare denotedby
S’(V), andS’(V)0, respectively.It is easyto seethat

= S’(V)1 (generalizeddensities)

and

[S( V)1]’ = S’(V)0 (generalized functions).

The Fourier transform(7) defines an isomorphismof S(V),and S(V)0. This
isomorphismcanbe extendedto S’(V)1 in theusual way:

=

for ~ES(V*)1, ~7 ES’(V)1. The Fourier transform of a generalizedfunction
T E S’(V)0 is by definitionsuch I~E S’(V*)1 that ~7= T, whereT is T composed

with thereflectionof V:

(~,T) = (~,T) for ~ ES(V)1 ~(v) = ~(— u).
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We give hereseveralusefulexamplesof Fourier transforms.

EXAMPLE 1. Special densities. For eachp El V* I~p ~ 0 we denoteby p1’ the

uniqueelement°~I(V*)* I suchthat

1 ~‘1

n = dim V.
n! 2ir

Let denotethe Dirac density:

(f,6
0)=f(0) for fES(V)0.

Then = 1 and for eachconstantdensityp El V* I~i-~� 0, we have

=

EXAMPLE 2. jffES(V)0 then

f~zzp*(p .f),

where p is an arbitrary elementof I V* I such that p � 0. The equality is valid

also forf replacedby T.ES’(V)0.

EXAMPLE 3. Let X be a subspaceof V. If ~TES’(X)1, we denote by .~2”6U~

theelementof S’(V)1 definedby

for fES(V)0.

If TES’(V/X)0, wedenoteby T® l~an elementof S’(V)0 definedby

(~,T®l1)= ( f~~T) for ~ES(J~1.

We shall showthat for ~7’E S’(X), we have
(~6 )=~2”IPl .

x

Indeed,for ~ ES(V*)1 we have

(~,(~61y) = = ~ ~“) =

= ((fr )~,~)= ~L~’~ ) = (~,~ ® 1 X°>~



THE CATEGORY OF FRESNEL KERNELS 93

DEFINITION 2. A generalizeddensity ~ ES’(V)
1 is said to be integrable if ~is

a continuous,slowly increasing (i.e. polynomially bounded)function. In this

case the integral f~.~ is definedby

f
iv

Remark. L. Schwartz defined summabledistributions in a different way (see

[4]). Onecanshow that thetwo definitionsare equivalent.

EXAMPLE 4. The product of 0 ES(V) and ~ES’(V) is defined in the standard

way:

(f,0~)(fiP,~K) forfES(V)0.

We shall show that 0~~ integrableand 0~~~or(0,.)([). For

we have

(~,(iP~Y)=(~, 0 ~‘)=(0 ~

~

= f ~(w)(~~0,~),

JV*

wherex~(v)= e(v,w) = ~ It turnsout that

(10) (iP..*’~Y:V*_÷C; w~—~(~~0,)()

is a continuousfunction. By the continuity of .)Vthereexists a constantC such

that

(11) ~

where II I~are the norms from formula (3) and thesumis finite. It is easyto see
that this sumisboundedby a polynomial.

EXAMPLE 5. Fresnel integrals. Let Q be a non-degeneratequadratic form on
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V(i.e. dQ : V-÷V* is a bijection). If p El V* thenpe’~is integrableand

I pe1Q =

pQ

where sgnQ is the signatureof Q and PQ is the uniquepositiveelementof V*

suchthat

(dQ)pQ=p~~

In orderto prove this it sufficesto showthat

(pee) (w) = ~ ~insgnQ/4_i((dQY’w,w 1/2

!IQ

Theuseof a canonicaldecompositionof V for Q:

k pe1Q=~pke1~

reducesthe problem to the one-dimensionalcase,where it becomesa standard

exercisein thetheoryof distributions.
Our next definition concernsthe integration with respect to a part of the

variables. In this case the objects we are going to integrateon a vector space

V areelementsof thespace

S’(V)
1~ S’(E) = pS’(V) ~ S’(E) = (p n 1) S’(V nE)

(hereEisa vectorspaceandp El V* 1/2,p r91r 0).

DEFINITION 3. An element .~ of S’(V), ~ S’(E) is said to be integrableon V if
10 ~ 0 is integrablein the senseof Definition 2 for each0 ES(E)

and

2°there existsa polynomial function P on V* and a continuousseminorm

II on S(E) suchthat

I ~ Or I ~~IIOIl

for any 0 ES(E). If .~Yis integrablethen the integral f~,~ is definedby

(o~f~)=f~o=(~or(0).
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Remarks.(i) From 10 it follows that 0 ~ (ff~0) (w) is a continuousfunc-

tional on S(E) for eachw E V~andalso that w ~ (L21 cbY(w)is apolynomial-

ly boundedfunction for each0 ES(E). Condition2°statesthat the continuity
in Oandthe polynomialboundednessin w are uniform.

(ii) The spaceS’(E) can be replacedby S’(E)1, S’(E)0 and similar spaces.

EXAMPLE 6. Generalized half-densities as kernels of integral operators. Let
i~ES’(VIPE)and 0 ES(V). We shall show that (001) iris integrableon

V and

.K~’0= (0®l)ir.

First observethat for any 0 ES(E)

[(ill ol) ~ir]~0= 0

Consequently,this generalizeddensity is integrable (see Example 4). Using
(10) we obtain

{E(iP ® 1) ~ir]~ç~}(w) =(~, iP,i~O) = ~ aO,ir).

By the continuity of i~’,thereexist continuousseminormsII lI~and II~II on S(V)

and S(E) respectively,suchthat

I (~ iPe0,~~’)l~II~w‘P Ill oil.
Here~ 0 is polynomially boundedasin (11).

PROPOSITION6. (Fubini theorem). Let ~ E S’(V 0 E)1 be integrable on V. If

V = X 0 V, then ~?tis integrableon X, .11 ~ is integrableon Vand

Froof For g E S(E)0 wehave

(.~7~g)~=

since

(~,(2T~g~)=(~, f1~g) =(~®g,~t) =

~
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for ~‘ E S(V*)
1. Similarly wehave

— -

‘. x ~ — x*

forfES(Y IDE)0. Forf=h ®g, h ES(Y)0,gE S(E)0,we obtain

E~~I~(hng)1 = ~I:~E*(~®~)= (f~:g);: ~ = ~ /‘.

Since (Y~5g)- is continuousandpolynomially bounded,

(12) [~Y~E(/i ®g)] = f(~gy~

is also a continuousand polynomially boundedfunction. Moreover,sincethere

existsa polynomialF suchthat

(13) I (~1g) - ~ II g Il~ II II — a seminormon S(E)0,

we have

(14) I [f~E(/i ®g)](p) I ~ fFP~ ~)lIg lI~I ~) I ~<P~(p) Il” 112 (Ig II

for p EX*, where P~is a polynomial and II~II2is a seminorm on S(Y)0. Note
that we can always chooseF as a tensorproduct of polynomials,since there
exista positiverealnumberC andapositive integerm suchthat

P(p,r)~C(l + p
2+ r2)”~‘~C(l + p2)m(l+ r2)m

wherep EX*, r E Y* and the squaresp2, r2 are takenwith respectto arbitrary
scalarproductsin X* and V*.

For f
0ES(fl0nS(E)0 (the algebraic tensor product) we obtain from (14)

(15) (,~‘Y~DEfyI ‘~11f01I1
where II II~is a continuousseminormon S(Y0 E)0. If we takenow a sequence
f ES(Y)0u S(E)0 converging to fES(V nE)0, then by (15) the functions

(.9~rEf0k) convergeuniformly on compactsets in X*. Therefore the limit

is a continuousfunction and (~~fY must coincide with this function. Mo-

reover,

- ~
for fE S(V IP E)0, so £t is integrableon X. The integral .f~.~‘ is an element

ofS’(YIPE)1givenby
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Q f ~ (~YaEf)-(
0) for fES(YIPE)0.

Now we chek the integrability of f~..~Z’on V. To this end we compute

[(f~~)çg1 forg ES(E)0:

(~,[(f~g]) = (~,(f~)cg) = ( ~ =

= ~ = f(~~Y(0~.) ~.)

for ~ES(Y*)1 (the last equality follows from (12)).The result is a continuous,
polynomially boundedfunction on V*:

[(f Egf(~)= (~g~(0,r).

From (13) we getalso the requiredinequality

~lIgII

for r E Y”. Thus f~~‘is integrableon Y andwe haveforg ES(E)0

~,fJ~ (g,f~) .

Remarks. (i) If we put E = {0}, we obtain the Fubini theorem for integrable

densitieson V.

(ii) The space S’(V IP E)1 in the proposition can be easily replacedby
S’(V)1~ S’(E) etc. The Propositionis formulatedin termsof densitiesin order
to simplify the notationin theproof.
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4. FRESNEL DISTRIBUTIONS

a) RegularFresneldistributions

DEFINITION 4. A regular Fresneldistribution on a vectorspace V is a half-density

on V of thefollowing form

(16)

whereQ is a quadraticfunction on V andp El V* 1/2 , p ~ 0.
To each regular Fresneldistribution ir on V therecorresponda quadratic

function Q on V and a regular LagrangiansubspaceL of PhV such that (16)
holdsfor somep and L is generatedby Q.

b) Fresneldistributionsdefinedby Moresefa,nilies

By Proposition 5 any (not necessarilyregular) LagrangiansubspaceL C P/i V

is generatedby a Morse family M indexedoverV. M is a quadraticfunction on

V n A, where A is a vectorspace.ThereforeM correspondsto a regular Lagrangian
subspaceof Ph(VIP A). Thus,one candefinegeneral Lagrangiansubspacesstart-

ing from regularones.The following propositionenablesus to proceedsimilarly
with Fresneldistributions.

PROPOSITION7. Let M be a quadratic function on VIP A and let p El V* 11/2

A* I p ~ 0. Then peiM is integrable on A if and only if M is a Morsefamily

of functionson A. 0

Proof If M is not a Morse family then = (pe1M)X 0 is invariantwith respect

to a one-parametergroupof translations

A~X —~A+tA0EA (A0EA,X0�0,tEIR)

for 0 E S(V) (see condition(i) of Proposition3). Thereforethe Fouriertransform

of satisfiestheequation

(A0, )~=O

and cannotbe a continuousfunction, unless it is zero. But it is not zero

for a certain0 E S(V),sincepe~’M �‘ 0. Thus petM is not integrable.
Now, let us assumethat M is a Morse family on V. Let M be given by formula

(2) with A andB satisfying the condition (iii) of Proposition 3:

(17) ImA+ImB=A*.

Let p = ~V®

11A’ where p~,El V’~ 1/2, p El A* I and let a(A) = 1/2 Q~,AX).
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Wehavefor 0 E S(V)

e,B*~O

V/kerB

where

0B ~
‘IkerB

is an elementofS(V/kerB)
1.Thus

~A) = p\ e ~~~~B(B*A)=
11A e1h1~~)(OB0 B~‘)(X),

whereB
0: V/kerB -+ Im B is the isomorphisminducedby B. Using the result of

Example3 we canwrite

(0B0B~lY(A) =

whereOA* = 0 B0 1) . ~ B’ andalso

=

where ~°~1ES’(Im A)1 is givenby

=

for x E Im A (see Example 5). Here A0: A/kerA -+ Im A is the isomorphism

inducedbyA anda0(~)=

Now we calculatethe Fouriertransformof For~ES(A*)1,

(18) (~, ~

=((~*OA*), pAe) = ~ (pAe’°Y)=

= (~*0A*,(ei0)7p~)= ((~*OA*)/p~,ftöImA) =

=([(~*0A*)/P~]I1mA~21)=

= f ~ f OB(B~’xB)~(xA—xB)/P~=

ImA 1mB

= f ~(xA)OB(B~’xB)~(xA-xB)/p~

ImAxImB (xAEImA,~BEImB).



100 W.M. TULCZYJEW, S. ZAKRZEWSKI

We haveused the standardtheoremon the Fourier transformof a convolution

and theresultof Example2.

Now considertheexactsequenceof linearmappings

a
0—*ImA flImB—*ImA xImB—÷ImA+ImB----~0,

where

a(i~)=(i~,i~)for ~EImAflImB

for XAEImA,XBEImB.

Condition (17) implies

(ImA xImB)/(ImA flImB)=A*.

It follows that the last integral in (18) can be written in the form fA* ~(x)f~(x),

where

(19) f~(x)=

= f ~

lmA flImB

Here ?C~
4ElmA, XB Elm B aresuchthat XA — ~B = x, p1isanelementof I (V/kerB)* I

different from zero and~0e I (Im A n Im B)* I is definedby p ® B0p1 = /1~®P~.
It is easyto seethat ~ is just the functionf~.Theintegralon the right hand

side of (19) is a continuousfunction of and It follows that .~71,(x)is a
continuousfunctionof x. Wehavealso

where 11011 = sup
1x ~ OB(B~(xB+ ii))J (X = Im A n 1mB) is a continuous

xBE1mB

seminormon S (V). U

DEFINITION 5. An element ir of S~(V) is called a Fresnel distribution on V if

= fA peiM, wherep andM satisfy the assumptions of Proposition 7.

Examplesof Fresneldistributionsare providedby regularFresneldistributions

(takeA = {0}).
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c) Fresneldistributions characterizedin termsof constraints

PROPOSITION8. Each Fresnel distribution ir on a vector space V is of the

following form

(20)

where ‘P ES(V)
C is a subspaceof V

Q is a quadraticfu,zctionon C

yE Horn (I V* 11/2,1C* I)~~ 0

and ‘P I~denotesthe restriction of’P to C.

The objects v, C and Q are uniquely determinedby ir. If ~= f~peiM then

Cand Q aredeterminedby M as in Proposition4.

Proof Fromformula(19) we havefor 0 ES(V)

(o,f
11eIM) =(0)=

= f insgn~a~_~(A~l~n>O(B ‘~i)/~~=

Im A fl Im B

= f (Blp)e

42~0~~>O/p_

B~~(1mA)

= f (~l)ias~n(a)/4~(AoBoBo) ( f Pve~0)/Pi=

B~1(1niA) kerB

fias~n(a)/4_(A~1Bv~Bv)/2 + iQ

0(v)~~1

where C = B
1(Im A) and p~.= ~2® B~’po El C* l~Here p

2 El (ker B)* I is such
that ~2® p1 = p~..It follows that .,( hasthe form (20) with C and Q determined
by M as in Proposition4. Uniquenessof v, C and Q is obvious. •
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5. FRESNEL KERNELS

DEFINITION 6. Let X and V be two vectorspaces.A Fresnelkernelfrom X to V

is a Fresnel distribution on V 0 X.

The set of Fresnel kernels from X to V will be denoted by FK(V, X).
To each Fresnel kernel ~ there correspondsa morphism Q (or p) in the

categoryQF(or LPR). Weshall write

Q =cl(.~)(orp =cl(~))

in orderto denotethe morphismQ (or p) correspondingto .~.

By example 6 a Fresnel kernel .~ E FK( V, X) is the integral kernel of the

operator~ :5(X) -+ S’(V). The adjoint (in the sense of the scalar product (5))

operator(~)1 :S(Y)-~S’(X) correspondsto the adjoint of~, which is by
definition a Fresnelkernel ~f3~from V to X suchthat

(‘P®O, ~ = ~ ~) =(O ®‘P, ~)

for ‘P E S(X), 0 E S(Y).We have then

(~t)Y

and

cl(,~t) = cl(~)~.

Weshall use occasionally the following abbreviated notation

(21) ~ and S’=~

for a Fresnel kernel .~ E FK(Y,X).

a) Composition

PROPOSITION 9. Let p
1 : PhX -+ PhVand p2 : PhV -+ Ph Vbetwo linearphaserela-

tions. Let M1 : VeX eA1 -# I~and M2: VIP VIP A2-÷Rbe Morse families gene-
rating p1 and p2, respectively. Then the function M : V OX ID A1 ID A2 ID V -~IR,

givenby

M(y, x, A1, A~,v) = M2(y, v, A2) + M1(v, x, A1),

is a Morsefamily indexedoverVox if and only if

(22) p,({O}) r~p~O})= {o}.

In this caseM generates p2 o p1.
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Froof Wehave

p
1({0}) = {u IPw E VIP V* I thereexistsA1 E A1

suchthat dM1(v, 0, A1) = (w, 0, 0)}

and

p~({0}) = { V ID W E V ID V~I thereexistsX~E A2

suchthat dM2(0,v, A2) = (0,—w, 0)}.

Hence,condition(22) is equivalentto the following condition:

(23) dM1(v, 0, A1) = (w, 0, 0) and dM2(0, u, A2) = (0,—w, 0) implies

v=0, w=0 for X1EA1, X2EA2,vEV, wEV*.

Wehavealso

~, Ap X2~v), dM(y,x,A1, A2, u)) =

= ((5,~i,X2), dM2(y,v, A2)) + ((ii, ~, A1), dM1(u, x, A1)).

We first prove the sufficiency of condition (22). Supposethat dM(0, 0, A1,
A2, v) = 0. Then

(U~,v,X2),dM2(O,v, A2)) + ((ii, ~,A1), dM1(v,0, A1)) = 0

for each 5, ~,X~,A2, i3. If we set~ = 0, ii = 0 and X~=0, we obtain dM1(u, 0, A1)=
=(w1,O,0) for some w1EV*. If we set 11=0, ~=0 and A1=0, we obtain

dM2(0, v, A2) = (0,w2, 0) for some w2 E V*. We see that w1 + w2 = 0. From
(23) we obtain v = 0, w1 = 0 and w2 = 0, hence dM1(0, 0, A1) = 0 and
dM2(0, 0, A2) = 0. Since M1 and M2 are Morse families it follows that A1 = 0

and A2 = 0.
Now we prove the necessity of condition (22). Supposethat dM1(v, 0, A1) =

= (w, 0, 0) and dM2(0, v, A2) = (0, — W, 0). This gives

((5, x,Ap A2, 15), dM(0, 0, A1, A2, v)) = 0

for each 5~~ ~ A2, 13, henceA1 = 0, A2 = 0 and u = 0 becauseM is assumed
to be a Morse family indexed over Y ID X. Consequentlyw = 0.

The lastassertionof the propositionmay be provedas follows. Let p : Ph V -+

-~Ph Y be the relationgeneratedby M. Then(y, r, x,p) E Graphp if andonly if
there exists A1, A2 and v such that dM(y,x,A1,A2,v)=(—p,r,0,0,0,), or if
andonly if thereexist A1, A2 andv suchthat

(24) ~ U~A2), dM2(y,v, A2)) + ((11, ~,A1), dM1(v,x, A1)) = (3, r) — (.~,p)
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for each j~,1, X~,X~,15. On the otherhand,(y, r, x,p) EGraph(p20 p1) if and

only if thereexist A1, A2, ~,andw suchthat

(25) dM1(v,x, A1) = (0, —p, w) and dM2(y, V, A2) = (r, —w,0).

It is easyto seethatconditions(24) and(25) are equivalent.

DEFINITION 7. Two Fresnel kernels ~ EFK(V,X) and ~2 EFK(Y, V) are

said to becomposableif for eachrepresentations

(26) ~=fpietM1 ~2=fp2e1M2,

whereM1 and M2 are Morse families indexed over V 0 X and V 0 V, resp.,and

p1 El (V® X)* 1/20 Ai” I~~2El (VIP V)* 1/2 ®I A~’I~the density

iM2(y,u,X2) iM1(u,x,X1)

(y,x,A1,A2,v)F—+p2p1e e
is integrable on A1 0 A2® V. Here p2p1 is considered as an element of

I(YIPX)* 1120 I(A1IPA2ID V)* I.

By Proposition 9, two Fresnelkernels ~ EFK(V,X) and ~2 EFK(V, V)

are composableif and only if the relationsp1 = cl( .~) and p2 = cl( ~ satisfy

condition(22). If ,~and “2 are composablethenthe integral

iM2(y, v, X2) iM1(v,x, X1)(27) j p2p1e e

A1eA2~V

doesnot dependon the choiceof representations(26) of ./3~and ““2 by Morse
families.This follows from theFubini theorem(Proposition6). Indeed,

iM2(y, v,X2) 1M1(v,x,A1)

j ‘~2p1e e =

A1~A2~V

iM2(y,v,A2) ,—.

= j p2e .~1(v,x)

does not dependon the choice of the representationof ,~ similar reasoning

appliesto ““2~
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DEFINITION 8. The composition ~2 0 of two composableFresnelKernels

E FK(V, X) and ~ E FK(Y, V) is theintegral(27) constructedfor arbitrary
representations(26) of and

It is immediatelyseenfrom Proposition9 that

(28) cl(.~
2o~ = cl( 3~)ocl(,~1)

for two composablekernels and
If cl(~1) is an epimorphismthe ~ ~ is alwaysdefinedsincecondition

(22) is always fulfilled in this case.We shall show that in this case ““2 o cor-
respondsto the compositionof operators~ and (~2)’c~ To this end we

needthe following lemmas.

LEMMA 1. Let .~ EFK(V.X). If cl(~) is an epimorphismthen ,~~S(X))=

= S(Y).

Proof LetQ =clC~F)bedefinedonCCVIPX. Set

= the projectionof C in X,

C~= the projectionof C in V,

X0 ={xEXIOIPxEC},

V0 ={yEVIyIPOEC}.

SinceQ is an epimorphism,C~= V. C inducesa linear isomorphismof C~/X0
and C~/}~= V/Ye. This isomorphisminduces a linearisomorphismA : Yj -÷X1,
whereX1 C C~and V1 C V are suchthat

C~=X0IPX1, Y=V0IPV1.

Wecan therefore parametrize C by V~IP Y~IPX0:

C={y0IPy1IP x0IPAy1EVe C1Iy0E Y0,y1E Y1,x0EX0}.

In this parametrization Q has the following form

Q(y0,y1,x0) = a(x0) + (x0, By0) +

+c(y0)+q(y1)+(x0,Ey1)+(y0,Fy1),

where a, c, q are quadratic functions and B : V,~-+X~,E : Y~-+X~, F: —~ }~.

The variation with respect to E 1~gives

Y~~r0=B*x0+dc(y0)+Fy1
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and this is a part of equationsfor the graph of the relation p = cl(~). This
equationhas to be satisfied for each r0 E }~,y0 E and y1 E Y1 by a suitable

x0 EX0 since p is an epimorphism.This implies that B* is surjective and B is

injective.
Let us choosepositiveelementspxEIX*I~/

2andp~EIV*I~/2.Let ‘P f1~xE

ES(X) andOES(Y). Then

= f pp0(yy)f(xAy)e~~0Y1~0)

Yo”YI”xo

for certainvE Horn (f (YIP X)* 11/2,1 C* I)~p EIXQ~. We havethen

(0, ~ 0) = f pyO(yo,y
1)ehtC~q(y1)+ (y0.Fy,)I

- Y0wy1

x f [pf(x0, Ay1)ei(a(x0) + (x0,Ey1 >> ei(x0, By0)

The mapping S(X) ~‘PF—~~� p S(Y~ID X0)0,where

i(o(x0) + (x0,Ex1))
~(y1, x0) = pf(x0, Ay1)e

is a bijection of Schwartz spaces.The integral

i(x0,By0)t~(y0,y1)=j ~(y1,x0)e

xo

is the partial (with respectto x0 only) Fourier transformof ~, evaluatedatp0 =

= —By0. By the injectivity ofB, the mapping p S(Y~IPX0)0.~~ —~r~ES(Y0IP
ID Y~ is suijective. Finally, the mapping S(Y0®I’~)~~ i~—* i9 ES(Y), where

=

is a bijectionof Schwartzspaces.Weconcludethat

S(X)~0 —~0=t~ES(Y)
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is a suljectivemapping. U

It follows from Lemma I that if .~ satisfies the conditions stated in this

lemma and ,~EFK(V, V), then 3~o~ is well defined as the composition

of operators.

LEMMA2. If ~‘ES’(VIPA)
1 is integrable on A and fES(V)0, then (f®l)~~f

is an integrabledensityon V ID A.

Proof With x definedas in Example4 the function

V* ID A* (I~’ (w x) I—+

is polynomially bounded:

I <P(x) Il~fII <P(x) P1(w) If ll~
(seeformula (11)). It is alsocontinuous.This follows from the inequality

I E~Jkf ~,f)](x) I + I L~~(~f)i(xk)— E~’~(~f)I(x)I
~F(xk) lIX~~f~fII+ I E~~(~f)]~(xk)— [(~f)1(x) I~

the continuity of V* ~w i—~.~,~,fES(V)0andthe continuity of[~(~~f)r(~c)
with respect to x. Weshall show that

[(f® l).~]~(w,,c)=

Indeed, from formula (10) wehaS’e for any ~ ES(V*)1, rj ES(A*)1

(~®i~, Rf® l)~fl)=(~®i~,(fo 1).~’)=(f~®~,~)=
= (f ~ (~f~7~)=(~.[fr])

= f~(w)(~f,~ = f ~(w)(~,~(~f)) =

= f ~(w) (n, [~(~f)]) = f ~((w)[~(~f)}(x). •

V~ V*~A*

PROPOSITION10. If ~ � FK(V, X), ~ � FK(Y, V) and cl(~1) is an epimo-r-
phism,then
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~~2° ~

Proof Let ‘PES(X) and OES(Y). It follows from Lemma 2 that for any repre-

sentation(26) of 3~and ““2’ the density Y on W = Y IPX ID A1 ID A2 ID Vgiven

by

iM2 (y, v, A.2) iM1(v, x, X~)

Y=0(y)’P(x)p2e p1e

is integrable. From the Fubini theorem we have

f ~ f O(y)P2eiM.2~~~~X2)ff iM~(v,x,A1) =

W Y~V~A2 I A1

=f ff O(y)pe1M2~2)((~)x’P)(v)=

Y V A2

= (0, ~

On the other hand,

f ~= f 0(y)’P(x) f pepe =

W Y~X A1~A2aV

•

b) The partial categoryof Fresnelkernels.

We shall show that vectorspaceswith Fresnelkernelsas morphismssatisfy

all requirementsto form a category,exept that one stating that the composi-

tion is defined for each pair ~ ~ such that ~ EFK(V, X) and -~2E

EFK( Y, V). We say that vector spaceswith Fresnelkernelsform apartial cate-

gory.

First of all, thereexists the identity morphism I~,� FK(V, V) i.e. a morphism
which is composablewith any morphism ~ EFK(V,X) and any morphism

~“2� FK(Y, V) (in the correctorder)andsatisfies

I~o ~ = S~,~ =

This morphismI~is the Fresnelkernel which correspondsto the identity (I~)~
of S( V):
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for 0,’PES(V).

It is easy to see that ~‘P’
1V~ = fD p0(0 lD~’where D is the diagonal of V® V

and v is the composition of the following obvious mappings:

I V* 1/20 I y* 11/2 ..~IV* I _~~*ID*I.
The associativity holdsin thesenseof the following

PROPOSITION 11. If ‘-‘2 o is defined and c (,~a ,~) ~ defined then

also ~30 ~ (~~30 ~ ° .~are definedand

,~ o(32~ 0 ~~i~=(~3 0 ~ ~

Proof For k = 1,2,3 let .~kEFK(Vk+~ j’~), ~k = cl(.~k) and let

= ~Ak pke be representationsof ~ by Morse families.Then

iM

2(v3, 02, A2) iM1(o2, u~X~)

~ v1, A1, A2, ~ = p2e p1e

is integrable on A1 ID A2 ID and A2~ ~2 ~12 = ~~4~203~.Also

.Y(v4,v~,A1, A2, A3, 1)3, ~ =

= p3 eiM3(v4,u3,X3) p2 e iM2(v3,v2,A2) eiM1(o2,o1,A1)

~

Since p2(~O})C (p2op1)(’{O}), we have p~({0})flp2({0}) = ~o}.Hence d3o

0 ‘-“2 is definedand

(~30 ~2X~4,~ = f p3e~M3(04~03, A3) eIM2(03~02,A2)

A2a~A3~V3

Since ~ is integrableon W, the composition(~0 ““2) 0 is defined and

equaltof~~Y.

The map

V~Vt=V, ~

definesa contravariant functor in our partial category in the sensethat whenever

~20 S
1~is defined,. ~ is also defined (since condition (22) is satisdied)

and
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0 ~“~) = ~ 0,

This equality follows from the fact if ,~(y, x) =
1A peiM(y, X, A) is a representa-

tion of 3~bya Morse family, then

,~t(x,y)= f~e_1M(Y~)

A

is a representation of ,~~by a Morse family.
The map

V~—+PhV, —+cl(~),

definesa covariantfunctorfrom the partial category to the categoryLSR(formu-
la (28)).

c) Specialmorphisms

PROPOSITION12. For each Fresnel kernel ~ � FK( Y, X) the following condi-

tionsare equivalent:

(i) for eachpair of Fresnelkernels ~ 2’ if ,~ .~ and ~2 0 ,~are

definedtlzen

~ implies “’1’-”’2

(ii) for eachvectorspaceV andany ~ EFK( V, fl, ,~ ,~is defined
(iii) ~3lt ~is defined

(iv) cl(~) is an epimorphism

(v) ~÷(S(X)) C S(Y)
(vi) .~~(S(X)) = SO’)

(~)~ + (S(X)) ~ S( V)
(viii) S~— is an infectivemapping

(ix) (,~t) is infective.

Proof Let p = cl(3~).
(ii) (iii) is obvious;

(iii) (iv). {0} = p({0)) fl p({0}) =

(iv) ~ (ii) is obvious;
(i) ~ (iv). Assumethat p is not an epimorphism.Then one can constructan

isomorphismp
1 /

1PhY such that p

1op = p. Let .~ be such that cl(.~0)= p1.
Wehave

cl(,~0o,~)=cl(,~0)ocl(~) =
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hence ~ = A3~for a certain A EC. For ,3~j= ,~0/Awe havethen
o,~=IVo~,but ~1�IV.

(iv)=~(i). If = ~2°~ then cl(~1)ocl(,~)=cl(,~2)ocl(.~),

hence cl( ~ = cl( .~) and therefore = A But A ~ 0~ = ~2 o~

implies A = 1;

(iv) ~ (vi) by Lemma 1;
(vi) ~. (v) and (vi) ~ (vii) are obvious;
(vi) ~ (viii) is easy;

(v) ~ (iv), (vii) ~ (iv) and (viii) ~ (iv). Let us assume that p is not an epimor-

phism. Then p(X)
5 contains non-zero elements.Let y IDr EPhYbe such an

element. From Lemma3 (see Appendix) we have

(r_ -f--

From thisequationweseethat for any 0�S(X)

(r__ ~

No nontrivial element ‘P of S(Y) satisfies this equation:this contradicts
(iv) and (vi). The sameequationimplies that for eachx � 5(V)

~r+—~~/’~ x=O

and this contradicts(viii).
(viii) .~ (ix), since

(29) (~~)~x= ~

DEFINITION 9. A Fresnelkernelis calledan epimorphism if it satisfies the condi-

tionsstatedin Proposition12.

One can easily state the .sadjoints~version of Proposition12,giving conditions

for a Fresnelkernel .~ which are equivalentto

(ivt) cl(.~) is a monomorphism.

Such kernelsare called monomorphisms. Then we introducealso isomorphisms

- kernelsbieng at the sametime mono- and epi-morphisms.The following propo-
sition characterizesisomorphisms.
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PROPOSITION13. For S~EFK(Y,X) the following conditions are equivalent:

(i) ,~isan isomorphisrn

(ii) thereexistsA>Osuch that,~t o,~ = Alxand ~ J~,

(iii) thereexistsA > 0 suc/i that

(,~X)t,~X= A(I~)~and ~X(,~X)t = A(I~)~

(thatis to say,~ is proportional to a unitary operator).

Proof (i) (ii). We have

(30) cl(.~to~) =cl(,~)~ocl(.~)=
1~.xand cl(,~o,~t)= ~

Therefore.~to ,F=A1
1 and ~o.~t~zzflIy.Butr~rrX,since

~o,~t)o o(~to,~flzrA

The opereator ~ ,~i9= A(I1)~is positive,henceA is positive.

(ii) ~ (i). It is easyto show that (30) is satisfiedand it follows that cl(.~)is an

isomorphism.
(ii) ~ (iii) is obvious.

Epimorphisms, monomorphisms and isomorphisms form separately three
true categories, homomorphic with the correspondingsubcategoriesof LSR.

The following decomposition theorem holds:

PROPOSITION14. For each Fresnel kernel ,~there exist an epimorphism .~,

an isomorphism ‘~2and a monomorphism.~3such that ~ = ~2 0

If ,~E FK(X, X) is self-adjoint thenwecanset .}~ =

Proof Let cl(,~)= r~op0 or1 be the canonical decompositionof clC~P).Let
us identify the reducedsymplecticspacescorrespondingto r1 and r2 with certain

phasespacesso that we are dealing only with linear phaserelations.Let

‘-“’2’ “’3 besuch that cl(~1)= r1, cl(~2)= p0 and cl(~3)= r2. Then

where ~2 = ~ S~.If ,~isself-adjoint,wehaver2 = r1.

DEFINITION 10. A Fresnel kernel A � FK(X, X) is called positive if for each

0ES(X)(’PIL~0)>~0.

PROPOSITION15. A Fresnel kernel A is positiveif andonly if there exists~such

that A = .~ o,~
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Proof If A is positive then it is also self-adjoint, by the standardreasoning.
Consider a decompositionA ~ ° ~° ~ as in Proposition 14. Let V be

such that ~0�FK(V, V). (~)~is proportionalto a unitary operator and it

is a positive operator by the positivenessof A. It follows that ~ = AI~with

A>0.As ,~onecanthentakeS~=\5~~.

The sufficiency of the condition is obvious. U

From Proposition 15 it follows that if A is a positive Fresnel kernel then
cl(A) is positive.

d) Quotient objects,subobjectsand equivalence

The following proposition characterizesequivalent quotient objects in our

partial category (cf. [2]).

PROPOSITION 16. Let � FK( Yj,X), ‘~2EFK(V2, X) be two epimorphisms.

Then thefollowing conditionsareequivalent:

(i) thereexistsan isomorphism ~EFK(Y2, I’~)suchthat

Sr1

(ii) thereexistsA> 0 such that ~ ° ~2 = A 0

(iii) Im (,Fjt)~ = Im
(iv) Im (Sri)~= Im (Sr2~
(v) ker(Sr1)~ =ker(Sr2)~
(vi) cl( Sri)and cl( “’2~are isomorphicquotient objectsofPI-IX.

Proof (i)=~(ii). Sr~•o 2(~~~i °““ )o(,~o ~ Sr1=ASr~o

oSr1

(ii) (iii). Im = Im(, ° “2)X = Im (Sri o Sr~)~= Im
(ii) ~ (iv) by formula(29)

(iv) ~ (v) becauseker(Sr1)~= [Im (Sr~)fl°
(v) ~ (vi). Forj = 1, 2 set K. = cl( Sr1)(Ph1). From Lemma3 (Appendix),

x IDp EK~~(p — — = 0.

It is easy to see that the latterequality is equivalentto

(~ ~

By the assumptionthis is equivalentto
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~ ~x)5ker(Sr2~y2

and also to

— ~ = 0.

Thelatterequality is equivalentto

x ® p � K~

(by Lemma3). It follows that K1 = K2.
(vi) (i). There exists an isomorphismp such that cl( Sr2) = p 0 cl( Sr1). Let

Sr0be suchthat cl( Sr~) = p. We have thencl(Sr2) = cl(Sr0°Sr1), henceSr2=

=ASr0oSr1=SroSr1,where Sr=ASr0. •

It follows from Proposition 16 that the equivalence classes of isomorphic
quotient objectsare in one-to-onecorrespondencewith positiveFresnelkernels
moduloa multiplicative constant(point (ii) of the proposition). The description

of subobjects is similar and can be obtained by passingto adjoint kernels.

6. UNITARITY CONDITION: A MODIFICATION OF THE PARTIAL
CATEGORY

In the partial categoryconsideredso far, ismorphisms are kernels proportional
to unitary kernels (Proposition 13). Now, let us consider a partial category

obtained from the previous one by removing all isomorphisms which are not

unitary kernels. We refer to this new partial categoryas to thepartial category

ofnormalizedFresnelkernels.Thus,isomorphismsin thismodified partial catego-
ry preservescalarproducts- the structurenaturallyexistingin spacesS(X).

a) Modified description of isomorphic quotient objects and subobjects

In the partial category of normalized Fresnelkernels, equivalenceclassesof

isomorphic quotient objects(also subobjects)are in one-to-onecorrespondence
with positiveFresnelkernels(no arbitraryconstantsappear).

b) Scalar product Schwartz spaces associated with positive kernels
With anypositiveA � FK(X,X) weassociatethe space

S(X,A) = S(X)/kerA.1..

This is a Fréchetspaceas the quotientof a Fréchetspaceby a closedsubspace.
Thereis asca.larproducton S(X, A), definedby



THE CATEGORY OF FRESNEL KERNELS 115

([‘P~1 I ~‘P2’~A= (‘P~IA÷02) for 01, ‘P~ES(X),

where [0] denotesthe projection of ‘PES(X) in S(X, A). The non-degeneracy
of the scalarproduct follows from Proposition 15:

0=(’PIA+’P)=(l/1j(Sr+)t Sr+0)=Sr÷’PISr~0)

implies ‘PCker Sr~= ker( Sr÷)tSr~= kerA~. Here Sr EFK(V,X) is any

quotient object belonging to the equivalence class distinguished by A, i.e. A =

= Srt o Sr. For any such Srthe continuous linear map Sr~: S(X) -÷5(Y) defines
a continuous bijection

(31) Sr÷A:S(X,A)—+S(Y)

which is a topological isomorphism,by The InverseMap Theorem.This is why
we call S(X, A) a Schwartzspace.In addition, Sr+A preservesthescalarproduct:

(0~I 02~A= ( Sr~~0
1I Sr+A02) for 0~,02 �S(X, A).

7. THE PARTIAL CATEGORY OF REDUCED SPACES

a) Reducedspaces

DEFINITION 11. If A � FK(X, X) is positive then the pair (S(X, A), (~ I ~)~) is

called the reduced spaceof S(X) with respectto A.

Note that for A = I~the reduced space is identical with S(X) (with the stan-

dardscalarproduct).

It is clear that a generalreductionleadsoutof the <<phase>>framework.Still,
we can use <<phase charts>>of S(X,A) asgiven by variouspossible ~ in for-

mula (31). The following proposition shows that the transitionfrom a <<chart>>
to another<<chart>> is given by a Fresnelkernel.

PROPOSITION17 .Let Sr � FK(V, X), Sr EFK(i~,X) be such epimorphisms

that Sr~ o Sr Srt ° Sr= A. Then there existsa uniqueunitary Fresnelkernel

Sr �FK(V, Y)suchthat

= ~+ =

(here [A~]
1 : Im A~-÷S(X, A)).

Proof By Proposition 16 thereexistsa uniqueisomorphismSrEFK(Y, I’) such
that Sr= Sro Sr. Thepropositionfollows from two equalities,
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{~A[Sr+~r’ Sr~=Sr~

and

{Sri.[A+]~(Srt)+} ‘-~ = .~+[A+]1A+ = ,~+. U

The Fresnelkernel Srdefinedin Proposition17 will be denotedby

(32) ~

For Sr= Sr�FK(Y,X) we haveSroASrt =J~,.

b) Fresnelrelations

DEFINITION 12. A Fresnelrelation from S(X1,A1) to S(X2,A2) is anequivalence

classof triples ( S~,Sr1 Sr21), where ~i’ Sr2are epimorphismssuchthat Sr1t 0

0 Sr1 = A1, Sr~° Sr2= A2 and -“’21 �FK(cod Sr2,cod Sr1), the equivalence
relation being givenby

( ~ Sr1 21~—~(p2, ~ ~r1~)if andonly if

~ ,~1o(Sr1o ~

Here cod Sr denotes the codomainof Sr � FK( Y, X) and is defined by

cod Sr= V.

The composition of Fresnel relations is defined by the composition of the

Fresnel kernels representing them (if they arecomposable):

[(‘3’ ~ ‘~“32)L° [(~ ~ Sr~21)L=[( ~ S~Sr~20

Reduced spaces with Fresnel relations and the composition defined above

form a partial category. Further discussionof its propertiesfollows the same

pattern as in the case of the partial category of Fresnelkernels. For example,

the adjointis definedas follows

[(Sr2. Sr1 .~21)J!. = [(Sr~1,Sr~2Sr~1)].

In the particular casewhenA1 = I~, we haveS(X1, A1) = 5(X1) and it suffices

to use the <<identity chartx’ A1 = I~, in Definition 12. The sameappliesto the
case when A2 = ~ In particular, Fresnel relations from S(X1) to S(X2) are
simply Fresnelkernelsbelongingto FK(X2,X1).

c) Reductions

DEFINITION 13. The reduction relation from 5(X) to S(X,A) is the Fresnel
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relation

S~~{(Sr,Ix;Sr)ISrtoSr=A}.

Thisdefinition is correct,sincefor Srt o~= A ~ o~ we have

,~= (Sro SrT)o Sr= (~oASrt)o SroI
1

and therefore(Sr, ‘x Sr) ‘— (Sr,I~~).

8. THE CATEGORY OF ISOMORPHISMS OF REDUCED SPACES AS A
GENERALIZED CATEGORY OF FRESNEL KERNELS

a) Imagesandcoimagesin thepartial categoryofFresnelkernels

DEFINITION 14. (cf. [5]) A coimageof a Fresnel kernel Sr is any epimorphism

Sr1 suchthat:

10 Sr= Sr20 Sr1 for a certain Sr2

and
2° for any decomposition Sr = Sr o Sr~, where Sr is an epimorphism,

thereexistsa morphismSr0suchthat .~ = Sr0° Sr~.

PROPOSITION18. Each Fresnel kernel Sr hasa coirnage. An epimorphism Sr1

is a coimageof Sr if and only if there exists a monomorphismSr2 such that

Sr = Sr2o Sri.

Proof By Proposition14 onecanfind an epimorphismSr1 anda monomorphism

Sr2suchthat Sr= Sr2 o Sr1. We shall show that Sr1 is a coimageof Sr. In fact,
if Sr~is an epimorphismsuchthat

Sr=Sr ° Sr~,

we have

Sr~=Sr~0Sr~,

whereSr~is an epimorphismand is a monomorphism.Thenfrom the equali-

ty Sr= Sr’~o (Sr~0 Sr~)= Sr20 Sr1 it follows that ker (Sr~ 0 Sr~ = ker Sr1+

(see (21) for notation). From Proposition 16 it follows that, there exists Sr”

such that Sr1 =Sr”o(Sr~oSr) = (Sr”oSr~)~Sr= Sr0oSr. Now if we
assumethat Sr’1 is also a coimage of Srthen Sr’1 = Sr’ o Sr1 for a certainSr’.

Since Sr1 = Sr0° = (Sr0oSr’)° Sr1, it follows that Sr0 oSr’ = I, ~ is

anisomorphism,Sr20 = Sr20 Sr0is a monomorphismand Sr= Sr20o Sri. U
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It is easyto seethat classesof coimagesof Fresnelkernelscoincidewith classes
of isomorphic quotient objects in the partialcategoryof Fresnelkernels.

Similar treatment as above applies to images.

b) Fresnelkernelsand isomorphismsofreducedspaces
To each Fresnel relation 0 = [( ,~,Sr1, .~)] from S(X1,A1) to S(X2,A2)

therecorrespondsa uniqueFresnelkernel Sr�FK(X2, X1) givenby

Sr=Sr2°Sr210Sr1=~~,2o00~1.

If 0 is an isomorphism(i.e. ~ is an isomorphism)then Sr hasthe samecoima-

gesasA1 and the sameimagesasA2.

Conversely, for Sr � FK(X2, X1), A1 having the same coimages as Srand A2
having thesameimagesas Sr, thereis a uniquedecomposition

Sr=~~°Øo~A1’

where ~ is an isomorphism.

c) ThegeneralizedcategoryofFresnelkernels

Isomorphisms of reduced spaces form a category. Weshalldescribethis category
in terms of Fresnelkernels. To this end we use the resultsof the precedingpara-
graph.Formally, we introducea new category:

10 objectsarereducedspaces,
2°morphismsfrom S(X1, A1) to S(X2, A2) are Fresnelkernelswith coimages

and imagesspecifiedby A1 and A2, respectively,

3° the composition of two mrophisms ‘-~= ~ oØ~o

5~A

1, ~, = 0

0 ~ A2 is the Fresnel kernel Sr� FK(X3, X1) definedby
— ° A

1 ~
— “11+ 2+ “1~-

(notation as in (21)).

Let us check that the above formula corresponds to the composition of isomor-
phisms of reduced spaces. If = o ° Sr

1 and Sr~= 0 ~32 °

then

~ Sr1..=Sr~~Sr32~~ Sr2~Sr21~Sr1~=

=.~3~+Sr32~(Sr2°~2Sr~)~Sr21~Srj~=Sr~~Sr32÷Sr21~Sri+

=(Sr~o p32° ~

The describedcompositiongeneralizesthe operationin formula (32). Hence,

we denote it by the samesymbol
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Let us note that each Fresnel kernel is representedby a morphism in this

category. However, the representation is not unique (one can multiply A1 and

A2 by positive numbers). Therefore reducedspaceswith Fresnel kernels asmor-

phisms form what is called a generalizedcatetory (see [6]), becauseof non-
-uniquenessof the domainandcodomain.

9. APPENDIX

PROPOSITION19. Let ~‘ be a Frenel distribution on a vectorspace V. Let i( be
of the form (20). Let L be the Lagrangian subspaceof PhV generatedby Q.
Then

vnw�L if andonly if (w__ ~)~~r=o.

(here~ denotesthederivativewith respectto v).

Proof (=~). Since w = dQ(v), we have (o~(w — -~- ~) ~ =

~ for ‘P�S(V)

(~=).Suppose(w__~‘~jr=o.Thenforanyxnp�L,

F 1 1 1
0=1w — — .~/‘0,p— — £E’~ X~=— w~(u+ w,x +p).)t”.

F i i J i

It follows thatvEFwEL
1 =L. U

LEMMA3. If Sr�FK(V,X), p=cl(Sr), K=p(X), thenyEar�KI if and only

if.r——2’~ Sr=0.

Proof Both conditions are equivalent to

ySlrEBOnO�Graphp.
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